How Much Omega-3s Do Children Need?

What Does This Study Mean For Your Children?

Author: Dr. Stephen Chaney 

It is back to school time again. If you have children, you are probably rushing around to make sure they are ready.

  • Backpack…Check.
  • Books…Check
  • School supplies…Check
  • Omega-3s…???

Every parent wants their child to do their best in school. But do they need omega-3s to do their best? I don’t need to tell you that question is controversial.

Some experts claim that omega-3 supplementation in children improves their cognition. [Note: Cognition is defined as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses. In layman’s terms that means your child’s ability to learn.]

Other experts point out that studies in this area disagree. Some studies support these claims. Others don’t. Because the studies disagree these experts conclude there is no good evidence to support omega-3 supplementation in children.

The authors of this study (ISM van der Wurff et al, Nutrients, 12: 3115, 2020) took a different approach. They asked why these studies disagreed. They hypothesized that previous studies disagreed because there is a minimal dose of omega-3s needed to achieve cognitive benefits in children. In short, they were asking how much omega-3s do children need.

They based their hypothesis on recent studies showing that a minimum dose of omega-3s is required to show heart health benefits in adults.

What Have We Learned From Studies on Omega-3s And Heart Health?

Omega-3s And Heart DiseaseThe breakthrough in omega-3/heart health studies came with the development of something called the omega-3 index. Simply put, omega-3s accumulate in our cell membranes. The omega-3 index is the percent omega-3s in red blood cell membranes and is a good measure of our omega-3 status.

Once investigators began measuring the omega-3 index in their studies and correlating it with heart health, it became clear that:

  • An omega-3 index of ≤4% correlated with a high risk of heart disease.
  • An omega-3 index of ≥8% correlated with a low risk of heart disease.
  • Most Americans have an omega-3 index in the 4-6% range.
  • Clinical studies in which participants’ omega-3 index started in the low range and increased to ~8% through supplementation generally showed a positive effect of omega-3s on reducing heart disease risk. [I say generally because there are other factors in study design that can obscure the effect of omega-3s.]

This is the model that the authors adopted for their study. They asked how much omega-3s do children need to show a positive effect of omega-3s on their cognition (ability to learn).

How Was The Study Done?

Clinical StudyThe authors included 21 studies in their analysis that met the following criteria:

  • All studies were placebo controlled randomized clinical trials.
  • The participants were 4-25 years old and had not been diagnosed with ADHD.
  • Supplementation was with the long-chain omega-3s DHA and/or EPA.
  • The trial assessed the effect of omega-3 supplementation on cognition.

I do not want to underestimate the difficulties the authors faced in their quest. The individual studies differed in:

  • The dose of omega-3s.
    • The relative amount of DHA and EPA.
    • Whether omega-3 index was measured. Only some of the studies measured fatty acid levels in the blood. The authors were able to calculate the omega-3 index in these studies.
  • How cognition (ability to learn) was measured.
  • The age of the children.
    • 20 of the studies were done with children (4-12 years old) or late adolescents (20-25 years old).
    • Only one study was done on early to middle adolescents (12-20 years old).
  • All these variables influence the outcome and could obscure the effect of omega-3s on cognition.

In short, determining the omega-3 dose-response for an effect on cognition was a monumental task. It was like searching for a needle in a haystack. These authors did a remarkable job.

How Much Omega-3s Do Children Need?

Child Raising HandHere is what the scientists found when they analyzed the data:

  • 60% of the studies in which an omega-3 index of ≥6% was achieved showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 20% of the studies that did not achieve an omega-3 index of 6%.
    • That is a 3-fold difference in effectiveness once a threshold of 6% omega-3 index was reached.
  • 50% of the studies in which a dose of ≥ 450 mg/day of DHA + EPA was used showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 25% of the studies that used <450 mg/day DHA + EPA.
    • That is a 2-fold difference in effectiveness once a threshold of 450 mg/day DHA + EPA was given.

The authors concluded, “Daily supplementation of ≥450 mg/day DHA and/or EPA and an increase in the omega-3 index to >6% makes it more likely to show efficacy [of omega-3s] on cognition (ability to learn) in children and adolescents.”

What Does This Study Tell Us?

Question MarkIt is important to understand what this study does and does not tell us.

This study does not:

  • Prove that omega-3 supplementation can improve cognition (ability to learn) in children and adolescents.
  • Define optimal levels of DHA + EPA.
  • Tell us whether DHA, EPA, or a mixture is better.

It was not designed to do any of these things. It was designed to give us a roadmap for future studies. It tells us how to design studies that can provide definitive answers to these questions.

This study does:

  • Define a threshold dose of DHA + EPA for future studies (450 mg/day).
  • Tells us how to best use the omega-3 index in future studies. To obtain meaningful results:
    • Participants should start with an omega-3 index of 4% or less.
    • Participants should end with an omega-3 index of 6% or greater.
  • In my opinion, future studies would also be much more effective if scientists in this area of research could agree on a single set of cognitive measures to be used in all subsequent studies.

In short, this study provides critical information that can be used to design future studies that will be able to provide definitive conclusions about omega-3s and cognition in children.

What Does This Study Mean For Your Children?

child geniusAs a parent or grandparent, you probably aren’t interested in optimizing the design of future clinical studies. You want answers now.

Blood tests for omega-3 index are available, but they are not widely used. And your insurance may not cover them.

So, for you the most important finding from this study is that 450 mg/day DHA + EPA appears to be the threshold for improving a child’s cognition (their ability to learn).

  • 450 mg/day is not an excessive amount. The NIH defines adequate intakes for omega-3s as follows:
  • 4-8 years: 800 mg/day
  • 9-13 years: 1 gm/day for females, 1.2 gm/day for males
  • 14-18 years: 1.1 gm/day for females and 1.6 gm/day for males.
  • With at least 10% of that coming from DHA + EPA

Other organizations around the world recommend between 100 mg/day and 500 mg/day DHA + EPA depending on the age and weight of the child and the organization.

  • Most children need supplementation to reach adequate omega-3 intake. The NIH estimates the average child only gets around 40 mg/day omega-3s from their diet. No matter which recommendation you follow, it is clear that most children are not getting the recommended amount of DHA + EPA in their diet.
  • Genetics.
  • Diet.
  • Environment.
  • The value placed on learning by parents and peers.

Supplementation is just one factor in your child’s ability to learn. But it is one you can easily control. . And if your child is like most, he or she is probably not getting enough omega-3s in their diet.

The Bottom Line 

It is back to school time again. Every parent wants their child to do their best in school. But do they need omega-3s to do their best? I don’t need to tell you that question is controversial.

Some studies support these claims, but others don’t. Because the studies disagree some experts conclude there is no good evidence to support omega-3 supplementation in children.

The authors of a recent study took a different approach. They asked why these studies disagreed. They hypothesized that previous studies disagreed because there was a minimal dose of omega-3s needed to achieve cognitive benefits in children. They asked how much omega-3s children need.

They analyzed the data from 21 previous studies looking at the effect of omega-3 supplementation on cognition (ability to learn) in children and adolescents. Their analysis showed:

  • 60% of the studies in which an omega-3 index of ≥6% was achieved showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 20% of the studies that did not achieve an omega-3 index of 6%.
    • That is a 3-fold difference in effectiveness once a threshold of 6% omega-3 index was reached.
  • 50% of the studies in which a dose of ≥ 450 mg/day of DHA + EPA was used showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 25% of the studies that used <450 mg/day DHA + EPA.
    • That is a 2-fold difference in effectiveness once a threshold dose of 450 mg/day DHA + EPA was given.

The authors concluded, “Daily supplementation of ≥450 mg/day DHA + EPA and an increase in the omega-3 index to >6% makes it more likely to show efficacy [of omega-3s] on cognition (ability to learn) in children and adolescents.”

For more details on the study and what it means for your children and grandchildren, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

What Is The Truth About Low Carb Diets?

Why Is The Cochrane Collaboration The Gold Standard?

Author: Dr. Stephen Chaney 

low carb dietAtkins, South Beach, Whole30, Low Carb, high Fat, Low Carb Paleo, and Keto. Low carb diets come in many forms. But they have these general characteristics:

  • They restrict carbohydrate intake to <40% of calories.
  • They restrict grains, cereals, legumes, and other carbohydrate foods such as dairy, fruits, and some vegetables.
  • They replace these foods with foods higher in fat and protein such as meats, eggs, cheese, butter, cream, and oils.
  • When recommended for weight loss, they generally restrict calories.

What about the science? Dr. Strangelove and his friends tell you that low carb diets are better for weight loss, blood sugar control, and are more heart healthy than other diets. But these claims are controversial.

Why is that? I have discussed this in previous issues of “Health Tips From The Professor”. Here is the short version.

  • Most studies on the benefits of low carb diets compare them with the typical American diet.
    • The typical American diet is high in fat, sugar and refined flour, and highly processed foods. Anything is better than the typical American diet.
  • Most low carb diets are whole food diets.
    • Any time you replace sodas and highly processed foods with whole foods you will lose weight and improve your health.
  • Most low carb diets are highly structured. There are rules for which foods to avoid, which foods to eat, and often additional rules to follow.
    • Any highly structured diet causes you to focus on what you eat. When you do that, you lose weight. When you lose weight, your health parameters improve.
    • As I have noted before, short term weight loss and improvement in health parameters are virtually identical for the very low carb keto diet and the very low-fat vegan diet.

With all this uncertainty you are probably wondering, “What is the truth about low carb diets?”

A recent study by the Cochrane Collaboration (CE Naude et al, Cochrane Database of Systematic Reviews, 28 January 2022) was designed to answer this question.

The Cochrane Collaboration is considered the gold standard of evidence-based medicine. To help you understand why this is, I will repeat a summary of how the Cochrane Collaboration approaches clinical studies that I shared two weeks ago.

Why Is The Cochrane Collaboration The Gold Standard?

ghost bustersWho you gonna call? It’s not Ghostbusters. It’s not Dr. Strangelove’s health blog. It’s a group called the Cochrane Collaboration.

The Cochrane Collaboration consists of 30,000 volunteer scientific experts from across the globe whose sole mission is to analyze the scientific literature and publish reviews of health claims so that health professionals, patients, and policy makers can make evidence-based choices about health interventions.

In one sense, Cochrane reviews are what is called a “meta-analysis”, in which data from numerous studies are grouped together so that a statistically significant conclusion can be reached. However, Cochrane Collaboration reviews differ from most meta-analyses found in the scientific literature in a very significant way.

Many published meta-analyses simply report “statistically significant” conclusions. However, statistics can be misleading. As Mark Twain said: “There are lies. There are damn lies. And then there are statistics”.

The Cochrane Collaboration also reports statistically significant conclusions from their meta-analyses. However, they carefully consider the quality of each individual study in their analysis. They look at possible sources of bias. They look at the design and size of the studies. Finally, they ask whether the conclusions are consistent from one study to the next. They clearly define the quality of evidence that backs up each of their conclusions as follows:

  • High-quality evidence. Further research is unlikely to change their conclusion. This is generally reserved for conclusions backed by multiple high-quality studies that have all come to the same conclusion. These are the recommendations that are most often adopted into medical practice.
  • Moderate-quality evidence. This conclusion is very likely to be true, but further research could have an impact on it.
  • Low-quality evidence. Further research is needed and could alter the conclusion. They are not judging whether the conclusion is true or false. They are simply saying more research is needed to reach a definite conclusion.

This is why their reviews are considered the gold standard of evidence-based medicine. If you are of a certain age, you may remember that TV commercial “When EF Hutton talks, people listen.” It is the same with the Cochrane Collaboration. When they talk, health professionals listen.

How Was The Study Done?

Clinical StudyThe authors of this Cochrane Collaboration Report included 61 published clinical trials that randomized participants into two groups.

  • The first group was put on a low carbohydrate diet (carbohydrates = <40% of calories).
  • The second group was put on a “normal carbohydrate” diet (carbohydrates = 45-65% of calories, as recommended by the USDA and most health authorities).
    • The normal carbohydrate diet was matched with the low carbohydrate diet in terms of caloric restriction.
    • Both diets were designed by dietitians and were generally whole food diets.

The participants in these studies:

  • Were middle-aged.
  • Were overweight or obese.
  • Did not have diagnosed heart disease or cancer.
  • May have diagnosed type-2 diabetes. Some studies selected participants that had diagnosed type 2 diabetes. Other studies excluded those patients.

The studies were of 3 types:

  • Short-term: Participants in these studies followed their assigned diets for 3 to <12 months.
  • Long-term: Participants in these studies followed their assigned diets for >12 to 24 months.
  • Short-term with maintenance: Participants in these studies followed their assigned diets for 3 months followed by a 9-month maintenance phase.

What Is The Truth About Low Carb Diets?

The TruthAll the studies included in the Cochrane Collaboration’s meta-analysis randomly assigned overweight participants to a low carbohydrate diet (carbohydrates = <40% of calories) or to a “normal carbohydrate” diet (carbohydrates = 45-65% of calories) with the same degree of caloric restriction.

If low carb diets have any benefit in terms of weight loss, improving blood sugar control, or reducing heart disease risk, these are the kind of studies that are required to validate that claim.

This is what the Cochrane Collaboration’s meta-analysis showed.

When they analyzed studies done with overweight participants without type 2 diabetes:

  • Weight loss was not significantly different between low carb and normal carb diets in short-term studies (3 to <12 months), long-term studies (>12 to 24 months), and short-term studies followed by a 9-month maintenance period.
  • There was also no significant difference in the effect of low carb and normal carb diets on the reduction in diastolic blood pressure and LDL cholesterol.

Since diabetics have trouble controlling blood sugar, you might expect that type 2 diabetics would respond better to low carb diets. However, when they analyzed studies done with overweight participants who had type 2 diabetes:

  • Weight loss was also not significantly different on low carb and normal carb diets.
  • There was no significant difference in the effect of low carb and normal carb diets on the reduction in diastolic blood pressure, LDL cholesterol, and hemoglobin A1c, a measure of blood sugar control.

Of course, the reason Cochrane Collaboration analyses are so valuable is they also analyze the strength of the studies that were included in their analysis.

You may remember in my article two weeks ago, I reported on the Cochrane Collaboration’s report supporting the claim that omega-3 supplementation reduces pre-term births. In that report they said that the studies included in their analysis were high quality. Therefore, they said their report was definitive and no more studies were needed.

This analysis was different. The authors of this Cochrane Collaboration report said that the published studies on this topic were of moderate quality. This means their conclusion is very likely to be true, but further research could have an impact on it.

What Does This Study Mean For You?

confusionIf you are a bit confused by the preceding section, I understand. That was a lot of information to take in. Let me give you the Cliff Notes version.

In short, this Cochrane Collaboration Report concluded:

  • Low carb diets (<40% of calories from carbohydrates) are no better than diets with normal carbohydrate content (45-65% of calories from carbohydrates) with respect to weight loss, reduction in heart disease risk factors, and blood sugar control. Dr. Strangelove has been misleading you again.
  • This finding is equally true for people with and without type 2 diabetes. This calls into question the claim that people with type 2 diabetes will do better on a low carb diet.
  • The published studies on this topic were of moderate quality. This means their conclusion is very likely to be true, but further research could have an impact on it.

If you are thinking this study can’t be true because low carb diets work for you, that is because you are comparing low carb diets to your customary diet, probably the typical American diet.

  • Remember that any whole food diet that eliminates sodas and processed foods and restricts the foods you eat will cause you to lose weight. Whole food keto and vegan diets work equally well short-term compared to the typical American diet.
  • And any diet that allows you to lose weight improves heart health parameters and blood sugar control.

If you are thinking about the blogs, books, and videos you have seen extolling the virtues of low carb diets, remember that the Dr. Strangeloves of the world only select studies comparing low carb diets to the typical American diet to support their claims.

  • The studies included in this Cochrane Collaboration report randomly assigned participants to the low carb and normal carb diets and followed them for 3 to 24 months.
    • Both diets were whole food diets designed by dietitians.
    • Both diets reduced caloric intake to the same extent.

What about the claims that low carb diets are better for your long-term health? There are very few studies on that topic. Here are two:

  • At the 6.4-year mark a recent study reported that the group with the lowest carbohydrate intake had an increased risk of premature death – 32% for overall mortality, 50% for cardiovascular mortality, 51% for cerebrovascular mortality, and 36% for cancer mortality. I will analyze this study in a future issue of “Health Tips From The Professor”.
  • At the 20-year mark a series of studies reported that:
    • Women consuming a meat-based low carb diet for 20 years gained just as much weight and had just as high risk of heart disease and diabetes as women consuming a high carbohydrate, low fat diet.
    • However, women consuming a plant-based low carb diet for 20 years gained less weight and had reduced risk of developing heart disease and diabetes as women consuming a high carbohydrate, low fat diet.

My recommendation is to avoid low-carb diets. They have no short-term benefits when compared to a healthy diet that does not eliminate food groups. And they may be bad for you in the long run. Your best bet is a whole food diet that includes all food groups but eliminates sodas, sweets, and processed foods.

However, if you are committed to a low carb diet, my recommendation is to choose the low-carb version of the Mediterranean diet. It is likely to be healthy long term.

The Bottom Line 

The Cochrane Collaboration, the gold standard of evidence-based medicine, recently issued a report that evaluated the claims made for low carb diets.

All the studies analyzed in the Cochrane Collaboration’s report randomly assigned overweight participants to a low carbohydrate diet (carbohydrates = <40% of calories) or to a “normal carbohydrate” diet (carbohydrates = 45-65% of calories) with the same degree of caloric restriction.

If low carb diets have any benefit in terms of weight loss, improving blood sugar control, or reducing heart disease risk, these are the kind of studies that are required to validate that claim.

The Cochrane Collaboration Report concluded:

  • Low carb diets (<40% of calories from carbohydrates) are no better than diets with normal carbohydrate content (45-65% of calories from carbohydrates) with respect to weight loss, reduction in heart disease risk factors, and blood sugar control.
  • This is equally true for people with and without type 2 diabetes.
  • The published studies on this topic were of moderate quality. This means their conclusion is very likely to be true, but further research could have an impact on it.

My recommendation is to avoid low carb diets. They have no short-term benefits when compared to a healthy diet that does not eliminate food groups. And they may be bad for you in the long run. Your best bet is a whole food diet that includes all food groups but eliminates sodas, sweets, and processed foods.

However, if you are committed to a low carb diet, my recommendation is to choose the low carb version of the Mediterranean diet. It is likely to be healthy long term.

For more details on the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Does Processed Food Give You Gas?

Why Does Processed Food Give You Gas?

Author: Dr. Stephen Chaney 

Does it feel like a war is going on in your belly every time you eat? It could be IBD (inflammatory bowel disease). IBD can take several forms, but the two most common are Crohn’s disease and ulcerative colitis.

What do we know about IBD?

  • The symptoms of IBD can make you miserable. They include:
    • Abdominal pain and cramping.
    • Diarrhea with occasional bouts of constipation.
    • Gas and bloating.
    • Loss of appetite and/or unexpected weight loss.
  • There are about 1.6 million Americans with IBD and 70,000 new cases/year.
    • The prevalence of IBD in the United States has increased by 34% between 2006 and 2016.
  • As you might suspect from its name, IBD is a chronic inflammation of the gastrointestinal tract.
    • It is thought to be caused by “dysbiosis of the gastrointestinal track” (In layman’s terms that means damage to your intestine caused by too many bad bacteria and not enough good bacteria).
    • There is also a genetic component to the disease. Some people are much more susceptible to IBD than others.

If you watch TV, you know that there are drugs for treating IBD. The ads make them sound like miracle drugs. But if you listen carefully, you also know that these drugs have a long list of side effects. And some of the side effects are pretty scary.

Are There Natural Approaches For Controlling IBD?

BacteriaSo, if your belly is a bit rumbly, you might be wondering if there is a more natural approach you could take. We know that diet affects the balance between bad and good bacteria in our intestine. Could something as simple as changing your diet, quell the fire in your belly?

While the answer seems obvious, it has been hard to prove. The results of previous studies have been inconclusive. That is because previous studies:

  • Included too few people. 1.6 million people in the US with IBD may sound like a lot, but that represents only 0.4% of the population. Unless you have a really big study, there won’t be enough people who develop IBD to give you statistically significant results.
  • Were too short. IBD doesn’t develop overnight.
  • Did not include a diverse enough population. Previous studies were confined to individual countries or specific regions within a country.

This study (N Narula et al, British Medical Journal, 2021;374:n1554) was designed to overcome the limitations of previous studies. It also looked at the effect of diet on IBD from a different perspective than most previous studies.

  • It did not focus on the effect of individual foods on IBD. Since consumption of processed foods is known to affect the population of intestinal bacteria, the authors of this study asked whether processed food consumption might influence the likelihood of developing IBD.

How Was The Study Done?

Clinical StudyThe authors of this study used data collected from the PURE (Prospective Urban Rural Epidemiology) study between January 1, 2003, and December 31, 2016. The PURE study collected data from a very diverse population. Specifically, it collected data from 21 low-, middle-, and high-income countries across 7 geographical regions (Europe, North America, South America, Africa, Middle East, South Asia, Southeast Asia, and China).

  • This study followed 116,087 adults aged 35-70 years (average age 50, percent women = 60%) in the PURE study for an average of 9.7 years. During that time, 467 participants (0.4%) developed IBD.
  • All participants filled out a baseline food-frequency questionnaire that had been designed and validated for foods specific to their country.
  • Participants were asked if they had a diagnosis of Crohn’s disease or ulcerative colitis as part of an annual follow-up questionnaire. To assure the accuracy of these answers they were validated with medical records whenever possible.

Does Processed Food Give You Gas?

Does processed food give you gas? Does it give you abdominal pain, diarrhea, and bloating? In short, does it give you IBD? That is the question this study was designed to answer. Here are the results of the study:

  • When comparing those eating the most processed food (≥5 servings/day) to those consuming the least (≤1 serving/day), processed food consumption increased the risk of developing IBD by 1.82-fold. This finding was equally true for:
    • Both Crohn’s disease and ulcerative colitis.
    • Adults <50 and adults >50.
    • Every region of the world included in the PURE study.
  • When the investigators looked at different categories of processed foods:
    • Processed meat intake increased the risk of IBD by 2.07-fold.
    • Soft drink intake increased the risk of IBD by 1.94-fold.
    • Refined sweetened food intake increased the risk of IBD by 2.58-fold.
    • Salty food and snack intake increased the risk of IBD by 2.06-fold.
  • When the investigators looked at different categories of unprocessed foods:
    • White meat, red meat, dairy, starchy foods, fruits, vegetables, and legumes had no effect on the risk of developing IBD.
    • Sodium intake (as measured by urinary excretion of sodium) also had no effect on the risk of developing IBD.

Why Does Processed Food Give You Gas?

Question MarkYou may be wondering why does processed food give you gas – and other symptoms of IBD.

The simplest explanation is that whole grains, unprocessed fruits & vegetables, and legumes provide the fiber that supports the growth of friendly gut bacteria. Processed foods displace these foods from our diet.

But these investigators think something else about processed foods may be contributing to the increased risk of IBD. That is because in their study:

  • Processed meat increased the risk of IBD, but unprocessed white and red meat had no effect on IBD.
  • Processed sweetened foods increased the risk of IBD, but unprocessed starchy foods and naturally sweet fruits had no effect on IBD.
  • Processed salty foods and snacks increased the risk of IBD, but sodium intake had no effect on IBD.

The investigators also noted that in mouse studies:

  • Some food additives found in processed foods cause bacteria to stick to the epithelial lining of the intestine and/or cause leaky gut syndrome, both of which can lead to chronic inflammation of the intestine.

The investigators concluded, “In this study, higher ultra-processed food intake was associated with a higher risk of IBD.”

They went on to say, “As white meat, unprocessed red meat, dairy, starchy foods, fruits, vegetables, and legumes were not found to be associated with development of IBD, this study suggests that it may not be the food itself that confers this risk but rather the way the food is processed or ultra-processed…Further studies are needed to identify specific potential contributing factors among processed foods that might be responsible for the observed associations in our study.”

[Note: This is a fancy way of saying that the detrimental effects of processed foods may be due to more than the fact that they displace healthier foods from the diet. It may also be due to the effect of food additives on the risk of developing IBD.]

What Does This Study Mean For You?

Questioning WomanIBD is a rare disease (0.4% of the population). If you don’t have digestive issues, it would be easy to ignore this study and continue with a diet of highly processed foods.

However, I would remind you that in recent issues of “Health Tips From the Professor”, I have shared recent studies showing that highly processed foods increase your risk of:

And these studies are just the tip of the iceberg. We know that diets rich in whole grains and unprocessed fruits and vegetables decrease the risk of heart attack, stroke, and Alzheimer’s disease. And a diet rich in whole grains, fruits, and vegetables is the antithesis of a processed food diet.

The evidence is overwhelming. Highly processed foods may be convenient and tasty. But if you value your health, they are not your friends.

The Bottom Line 

A recent study looked at the effect of consuming processed foods on the risk of developing inflammatory bowel disease (IBD). The study found:

  • When comparing those eating the most processed food (≥5 servings/day) to those consuming the least (≤1 serving/day), processed food consumption increased the risk of developing IBD by 1.82-fold. This finding was equally true for:
    • Both Crohn’s disease and ulcerative colitis.
    • Adults <50 and adults >50.
    • Every region of the world included in the study.

The investigators concluded, “In this study, higher ultra-processed food intake was associated with a higher risk of IBD.”

They went on to say, “…This study suggests that it may not be the food itself that confers this risk but rather the way the food is processed or ultra-processed…Further studies are needed to identify specific potential contributing factors among processed foods that might be responsible for the observed associations in our study.”

[Note: This is a fancy way of saying that the detrimental effect of processed foods may be due to more than the fact that they displace healthier foods from the diet. It may also be due to the effect of food additives commonly found in processed foods on the risk of developing IBD.]

For more details on the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Dealing With A Bone Bruise

My Bone Bruise Experience

Author: Julie Donnelly, LMT – The Pain Relief Expert

Editor: Dr. Steve Chaney

sunAugust is here and it’s hot in Florida, but that’s why we have air conditioning in our homes, offices, and cars…so that’s okay.  Meanwhile, we can enjoy outdoor sports in the morning, or later in the afternoon after the sun starts to go down.  Or, if you like sunning yourself at the beach, just avoid the strongest sun in the early afternoon.

In late May and June, I spent a good bit of time up north. In May I was in New York for my granddaughter’s college graduation, and in mid-June I was invited to Montreal to help a group of people who had tight muscles and long-standing pain.

As you probably know, I love sharing my work.  I think one of the most important things I do is teaching people how to do self-treatments, so they know how to stop pain FAST!  I was able to do that in Montreal and it was fulfilling for me, and certainly beneficial for the people I worked with.  I’d love to teach all over the USA, and the world!  Hopefully this trip was just the first of many!

In July I had several conversations with people about bone bruises.  It’s always interesting how a topic I had already planned on discussing ends up being a part of conversations with clients.  I guess it’s just confirmation that this is an important topic.

My Bone Bruise Experience

Foot PainSeveral years ago, I was in Hawaii visiting friends.  I used to live in Honolulu, so I had a lot of friends I wanted to see. I set out walking to visit one and by the end of the day I had walked at least seven miles all over town vising different friends.  That was fun, but the problem was, I was in flip-flops.

It ended up being a two-fold problem since every step I took my toes would curl down to hold on my flip-flops.  This overstrained the muscles that are underneath and next to the Achilles tendon.  But that’s another story for another time.

As I stepped off a curb my left heel hit the curb and my heel crashed down onto the road.  I hit it so hard I thought I had to have broken it.  At the minimum I thought I had cracked the bone.  Limping I headed back to my friend’s house and put ice on my foot.

The pain never lessened so I went for an x-ray.  The x-ray showed it wasn’t cracked or broken and I was told it would just heal.  Nice thought.  Months passed, I couldn’t put any weight on my heel, and nothing helped it.

It didn’t matter if I used ice or heat, lifted my leg up onto a chair or had my foot on the floor. Cushions in my shoe didn’t help, neither did rubbing it.  The ache went all the way up my leg and into my hip, so I was limping because of my foot, and I was limping because of hip pain.  Yikes!

That’s when I learned about bone bruises.

Dealing With A Bone Bruise

Inflammed HeelGoogle, who knows everything, wasn’t much help.  It told me that “a bone bruise is a traumatic injury” – you think!!

Then it said:

“A bone bruise causes blood and fluid to build up in and around your injured bone: You may have symptoms such as pain, swelling, and a change in color of the injured area.

Most bone bruises eventually heal without any problems. If your bone bruise is very large, your body may have trouble getting blood flow back to the area.”

In any case, I had 3 different x-rays because I couldn’t believe you could have this much pain without having a broken bone.  All of them showed that the bone was definitely not broken.

It took a full year for the pain to stop!

So, I learned two lessons…

1 – Don’t do anything that can bruise a bone.

2 – If I do get a bone bruise, just realize it will really hurt for a long time, nothing works to ease the pain, and eventually it will just go away.

It’s pretty hard to live life and never do anything that could bruise a bone, so just do your best.  It’s one of the reasons I looked for the Perfect Ball that I use when I teach clients how to relieve muscle spasms. I give a Perfect Ball to every client who comes to my office or buys one of my books since I want them to have a great ball that won’t bruise the bone.

One important suggestion is to never use a baseball, golf ball (on your arch), or lacrosse ball, as these can easily cause a bone bruise.

Here’s hoping you never have a bad bone bruise, but if you do, chin up and know it will eventually heal.

Coming Next Month

The summer is a great time for swimming!  It’s hot out and swimming refreshes the body, plus it’s a wonderful form of exercise.

The muscles of the shoulder get strained if you are swimming for extended lengths of time, so that will be our topic of the month.

Treat Yourself To Pain-Free Living

Not only is this the name of my self-treatment book, it’s also a wonderful way to live…..pain-free!

pain free living book

 

The book has:

 

*Lots of information about “why” and “how” muscles cause pain

 

*Over 200 pictures showing you how to release tight muscles

 

*Simple instructions for treating each muscle

For only $47 (plus S&H) you can have direction to find and self-treat aches and pains from your head to your feet!  It’s easy-to-read and easy-to-do.  You don’t need to stay in pain when you can Treat Yourself to Pain-Free Living.

Wishing you well,

Julie Donnelly

www.FlexibleAthlete.com

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Omega-3s Reduce Preterm Births

Do Omega-3s Make For A Healthy Pregnancy?

Author: Dr. Stephen Chaney 

omega-3s during pregnancy is healthyThe role of omega-3s on a healthy pregnancy has been in the news for some time. Claims have been made that omega-3s reduce preterm births, postnatal depression, and improve cognition, IQ, vision, mental focus, language, and behavior in the newborn as they grow.

The problem is that almost all these claims have been called into question by other studies. If you are pregnant or thinking of becoming pregnant, you don’t know what to believe.

  • Should you eat more fish?
  • Should you take omega-3 supplements?
  • Or should you just ignore the claims about omega-3s and a healthy pregnancy?

These are not trivial questions. Let’s consider preterm births as an example. The medical profession has made enormous advances in keeping premature babies alive. However, premature babies are still at higher risk of several health conditions including:

  • Visual impairment.
  • Developmental Delay.
  • Learning difficulties.

Plus, it is expensive to keep premature babies alive. One recent study estimated that increasing omega-3 intake during pregnancy could reduce health care costs by around $6 billion in the United Stated alone.

Unfortunately, it’s not just omega-3s and pregnancy. The same is true for almost all nutritional health claims. One day a study comes out claiming that nutrient “X” cures some disease or has some miraculous benefit. The bloggers and news media hype that study. Suddenly you see that health claim everywhere. It becomes so omnipresent that you are tempted to believe it must be true.

But wait. A few months later another study comes to opposite conclusion. Now the media is telling you that health claim is false. The months come and go, and new studies keep coming out. Some support the health claim. Others refute it.

Pretty soon the nutrition headlines just become “noise”. You don’t know what to believe. If you want the truth, “Who ya gonna call?”

Who Ya Gonna Call?

ghost bustersIt’s not Ghostbusters. It not Dr. Strangelove’s health blog. It’s a group called the Cochrane Collaboration.

The Cochrane Collaboration consists of 30,000 volunteer scientific experts from across the globe whose sole mission is to analyze the scientific literature and publish reviews of health claims so that health professionals, patients, and policy makers can make evidence-based choices about health interventions.

The Cochrane Collaboration reviews all the relevant studies on a topic, exclude those that are biased or weak, and make their recommendations based on only the strongest studies. Their reviews are considered the gold standard of evidence-based medicine.

If you are of a certain age, you may remember that TV commercial “When EF Hutton talks, people listen.” It is the same with the Cochrane Collaboration. When they talk, health professionals listen.

This week we will examine the Cochrane Collaboration’s review titled “Omega-3 Fatty Acid Addition During Pregnancy”.

How Was The Study Done?

Clinical StudyFor this analysis the Cochrane Collaboration reviewed 70 randomized controlled trials which compared the effect of added omega-3s on pregnancy outcomes with either a placebo or a diet no added omega-3s. These trials included almost 19,927 pregnant women.

In one sense, Cochrane reviews are what is called a “meta-analysis”, in which data from numerous studies are grouped together so that a statistically significant conclusion can be reached. However, Cochrane Collaboration reviews differ from most meta-analyses found in the scientific literature in a very significant way.

Many published meta-analyses simply report “statistically significant” conclusions. However, statistics can be misleading. As Mark Twain said: “There are lies. There are damn lies. And then there are statistics”.

The problem is that the authors of most meta-analyses group studies together without considering the quality of studies included in their analysis. This creates a “Garbage In – Garbage Out” effect. If the quality of individual studies is low, the quality of the meta-analysis will also be low. Simply put, the conclusions from some published meta-analyses are not worth the paper they are written on.

The Cochrane Collaboration also reports statistically significant conclusions from their meta-analyses. However, they also carefully consider the quality of each individual study in their analysis. They look at possible sources of bias. They look at the design and size of the studies. Finally, they ask whether the conclusions are consistent from one study to the next. They clearly define the quality of evidence that backs up each of their conclusions as follows:

  • High-quality evidence. Further research is unlikely to change their conclusion. This is generally reserved for conclusions backed by multiple high-quality studies that have all come to the same conclusion. These are the recommendations that are most often adopted into medical practice.
  • Moderate-quality evidence. This conclusion is likely to be true, but further research could have an impact on it.
  • Low-quality evidence. Further research is needed and could alter the conclusion. They are not judging whether the conclusion is true or false. They are simply saying more research is needed to reach a definite conclusion.

Omega-3s Reduce Preterm Births

clinically provenHere are the conclusions that the Cochrane Collaboration said were supported by high-quality evidence:

  • Omega-3s reduce the risk of preterm births.
  • Omega-3s reduce the risk of low-birth-weight infants.

The authors concluded: “Omega-3 supplementation during pregnancy is an effective strategy for reducing the risk of preterm birth…More studies comparing omega-3s and placebo are not needed at this point.”

In other words, they are saying this conclusion is definite. Omega-3 supplementation should become part of the standard of medical care for pregnant women.

However, they did say that further studies were needed “…to establish if, and how, outcomes vary by different types of omega-3s, timing [stage of pregnancy], doses [of omega-3s], or by characteristics of women.”

That’s because these variables were not analyzed in the Cochrane study. Their review and meta-analysis included clinical trials:

  • Of women at low, moderate, and high risk of poor pregnancy outcomes.
  • With DHA alone, with EPA alone, and with a mixture of both.
  • Omega-3 doses that were low (˂ 500 mg/day), moderate (500-1,000 mg/day), and high (> 1,000 mg/day).

Do Omega-3s Make For A Healthy Pregnancy?

What about the effect of omega-3s on other pregnancy outcomes?

The conclusions the Cochrane Collaboration said were supported by moderate quality evidence included reductions in:

  • Perinatal death.
  • Admissions to the neonatal intensive care unit.

There was not enough high or moderate quality data to determine the effect of omega-3s on other pregnancy outcomes such as postnatal depression. More research is still needed in those areas. However, if you do receive any of these benefits from omega-3 supplementation, you can just consider them as side benefits.

What Does This Report Mean For You?

pregnant women taking omega-31) The proven effect of omega-3 supplementation on preterm births is significant because preterm births increase the risk of:

  • Visual impairment.
  • Developmental Delay.
  • Learning difficulties.

2) The likely effect of omega-3s on admission to neonatal intensive care units is significant because those units are very expensive.

3) The Cochrane study did not determine whether omega-3 supplementation was equally important for women at low, moderate, and high likelihood of poor pregnancy outcomes.

  • Therefore, omega-3 supplementation should be considered for all pregnant women.

4) The Cochrane study did not determine whether omega-3 supplementation was equally important during the first, second, or third trimester.

  • Therefore, omega-3 supplementation should be considered by all women of childbearing age who might become pregnant and throughout pregnancy.

5) The Cochrane study did not determine whether DHA, EPA, or a mixture of the two was most effective.

  • Therefore, your omega-3 supplement should probably contain both DHA and EPA. A group of experts recently recommended  that adults consume at least 650 mg/day of omega-3s with ≥ 220 mg of that coming from DHA and ≥ 220 mg/day coming from EPA.
  • Since most pregnant women in this country consume around 89 mg/day of DHA + EPA, omega-3 supplementation is warranted.

The Bottom Line 

The effect of omega-3s on pregnancy outcomes have been confusing. Some studies conclude that omega-3s are important for a healthy pregnancy. Other studies suggest they are ineffective. What are you to believe?

Fortunately, a group called the Cochrane Collaboration recently conducted a comprehensive review of this topic. This is significant because Cochrane Reviews are internationally recognized as the highest standard in evidence-based health care. They influence the treatment protocols recommended by the medical community.

This Cochrane Review concluded that omega-3 supplementation during pregnancy:

  • Reduces preterm births and low birth weight infants.
  • Likely reduces perinatal death and admissions to the neonatal intensive care unit.

The authors of the review said: “Omega-3 supplementation during pregnancy is an effective strategy for reducing the risk of preterm birth…More studies comparing omega-3s and placebo are not needed at this point.”

In other words, they are saying this conclusion is definite. Omega-3 supplementation should become part of the standard of medical care for pregnant women.

For more details on the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Vitamin D And ADHD

Can ADHD Be Prevented?

Author: Dr. Stephen Chaney 

vitamin dIf you are pregnant, or of childbearing age, should you be supplementing with vitamin D? Increasingly, the answer appears to be yes.

  1. Based on blood 25-hydroxy vitamin D levels (considered the most accurate marker of vitamin D status):
    • 8-11% of pregnant women in the US are deficient in vitamin D (<30 nmol/L).
    • 25% of pregnant women have insufficient vitamin D status (30-49 nmol/L).

In short, that means around 1/3 of pregnant women in the US have insufficient or deficient levels of vitamin D. The effect of inadequate vitamin D during pregnancy is not just an academic question.

2) The Cochrane Collaboration (considered the gold standard for evidence-based medicine) has recently concluded that supplementation with vitamin D reduces the risk of significant complications during pregnancy.

3) Another recent study found that inadequate vitamin D status during pregnancy delayed several neurodevelopmental milestones in early childhood, including gross motor skills, fine motor skills, and social development.

If neurodevelopmental milestones are affected, what about ADHD? Here the evidence is not as clear. Some studies have concluded that vitamin D deficiency during pregnancy increases the risk of ADHD in the offspring. Other studies have concluded there is no effect of vitamin D deficiency on ADHD.

Why the discrepancy between studies?

  • Most of the previous studies have been small. Simply put, there were too few children in the study to make statistically reliable conclusions.
  • Most of the studies measured maternal 25-hydroxyvitamin D levels in the third trimester or in chord blood at birth. However, it is during early pregnancy that critical steps in the development of the nervous system take place.

Thus, there is a critical need for larger studies that measure maternal vitamin D status in the first trimester of pregnancy. This study (M Sucksdorff et al, Journal of the American Academy of Child & Adolescent Psychiatry, 60: 142-151, 2021) was designed to fill that need.

How Was The Study Done?

Clinical StudyThis study compared 1,067 Finnish children born between 1998 and 1999 who were subsequently diagnosed with ADHD and 1,067 matched controls without ADHD. There were several reasons for choosing this experimental group.

  • Finland is among the northernmost European countries, so sun exposure during the winter is significantly less than for the United States and most other European countries. This time period also preceded the universal supplementation with vitamin D for pregnant women that was instituted in 2004.

Consequently, maternal 25-hydroxyvitamin D levels were significantly lower than in most other countries. This means that a significant percentage of pregnant women were deficient in vitamin D, something not seen in most other studies. For example:

  • 49% of pregnant women in Finland were deficient in vitamin D (25-hydoxyvitamin D <30 nmol/L) compared to 8-11% in the United States.
  • 33% of pregnant women in Finland had insufficient vitamin D status (25-hydroxyvitamin D 30-49.9 nmol/L) compared to 25% in the United States.
  • Finland, like many European countries, keeps detailed health records on its citizens. For example:
    • The Finnish Prenatal Study collected data, including maternal 25-hydroxyvitamin D levels during the first trimester), for all live births between 1991 and 2005.
    • The Care Register for Health Care recorded, among other things, all diagnoses of ADHD through 2011.

Thus, this study avoided the limitations of earlier studies. It was ideally positioned to compare maternal 25-hydroxyvitamin D levels during the first trimester of pregnancy with a subsequent diagnosis of ADHD in the offspring. The long-term follow-up was important to this study because the average age of ADHD diagnosis was 7 years (range = 2-14 years).

Vitamin D And ADHD 

Child With ADHDDoes maternal vitamin D affect ADHD in the offspring? The answer to this question appears to be a clear, yes.

If you divide maternal vitamin D levels into quintiles:

  • Offspring of mothers in the lowest vitamin D quintile (25-hydroxyvitamin D of 7.5-21.9 nmol/L) were 53% more likely to develop ADHD than offspring of mothers in the highest vitamin D quintile (49.5-132.5 nmol/L).

When you divide maternal vitamin D levels by the standard designations of deficient (<30 nmol/L), insufficient (30-49.9 nmol/L), and sufficient (≥50 nmol/L):

  • Offspring of mothers who were deficient in vitamin D were 34% more likely to develop ADHD than children of mothers with sufficient vitamin D status.

The authors concluded: “This is the first population-based study to demonstrate an association between low maternal vitamin D during the first trimester of pregnancy and an elevated risk for ADHD diagnosis in offspring. If these findings are replicated, they may have public health implications for vitamin D supplementation and perhaps changing lifestyle behaviors during pregnancy to ensure optimal maternal vitamin D levels.”

Can ADHD Be Prevented? 

Child Raising HandI realize that this is an emotionally charged title. If you have a child with ADHD, the last thing I want is for you to feel guilty about something you may not have done. So, let me start by acknowledging that there are genetic and environmental risk factors for ADHD that you cannot control. That means you could have done everything right during pregnancy and still have a child who develops ADHD.

Having said that, let’s examine things that can be done to reduce the risk of giving birth to a child who will develop ADHD, starting with vitamin D. There are two aspects of this study that are important to keep in mind.

#1: The increased risk of giving birth to a child who develops ADHD was only seen for women who were vitamin D deficient. While vitamin D deficiency is only found in 8-11% of pregnant mothers in the United States, that is an average number. It is more useful to ask who is most likely to be vitamin D deficient in this country. For example:

  • Fatty fish and vitamin D-fortified dairy products are the most important food sources of vitamin D. Fatty fish are not everyone’s favorite and may be too expensive for those on a tight budget. Many people are lactose intolerant or avoid milk for other reasons. If you are not eating these foods, you may not be getting enough vitamin D from your diet. This is particularly true for vegans.
  • If you have darker colored skin, you may have trouble making enough vitamin D from sunlight. If you are also lactose intolerant, you are in double trouble with respect to vitamin D sufficiency.
  • Obesity affects the distribution of vitamin D in the body. So, if you are overweight, you may have low 25-hydroxyvitamin D levels in your blood.
  • The vitamin D RDA for pregnant and lactating women is 600 IU, but many multivitamin and prenatal supplements only provide 400 IU. If you are pregnant or of childbearing age, it is a good idea to look for a multivitamin or prenatal supplement that provides at least 600 IU, especially if you are in one of the high risk groups listed above.
  • Some experts recommend 2,000 to 4,000 IU of supplemental vitamin D. I would not recommend exceeding that amount without discussing it with your health care provider first.
  • Finally, for reasons we do not understand, some people have a difficult time converting vitamin D to the active 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in their bodies. If you are pregnant or of childbearing age, it is a good idea to have your blood 25-hydroxyvitamin D levels determined and discuss with your health care provider how much vitamin D you should be taking. Many people need more than 600 IU to reach vitamin D sufficiency status.

#2: Maternal vitamin D deficiency has a relatively small effect (34%) on the risk of the offspring developing ADHD. That means assuring adequate vitamin D status during pregnancy should be part of a holistic approach for reducing ADHD risk. Other factors to consider are:No Fast Food

  • Low maternal folate and omega-3 status.
  • Smoking, drug, and alcohol use.
  • Obesity.
  • Sodas and highly processed foods.

Alone, each of these factors has a small and uncertain influence on the risk of your child developing ADHD. Together, they may play a significant role in determining your child’s risk of developing ADHD.

In closing, there are three take-home lessons I want to leave you with:

  1. The first is that there is no “magic bullet”. There is no single action you can take during pregnancy that will dramatically reduce your risk of giving birth to a child who will develop ADHD. Improving your vitamin D, folate, and omega-3 status; avoiding cigarettes, drugs, and alcohol; achieving a healthy weight; and eating a healthy diet are all part of a holistic approach for reducing the risk of your child developing ADHD.

2) The second is that we should not think of these actions solely in terms of reducing ADHD risk. Each of these actions will lead to a healthier pregnancy and a healthier child in many other ways.

3) Finally, if you have a child with ADHD and would like to reduce the symptoms without drugs, I recommend this article.

The Bottom Line 

A recent study looked at the correlation between maternal vitamin D status during the first trimester of pregnancy and the risk of ADHD in the offspring. The study found:

  • Offspring of mothers who were deficient in vitamin D were 34% more likely to develop ADHD than children of mothers with sufficient vitamin D status.

The authors concluded: “This is the first population-based study to demonstrate an association between low maternal vitamin D during the first trimester of pregnancy and an elevated risk for ADHD diagnosis in offspring. If these findings are replicated, they may have public health implications for vitamin D supplementation and perhaps changing lifestyle behaviors during pregnancy to ensure optimal maternal vitamin D levels.”

In the article above I discuss what this study means for you and other factors that increase the risk of giving birth to a child who will develop ADHD.

For more details read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 

Is It The Sugar Or Is It The Food?

Is Fructose Bad For You?

Author: Dr. Stephen Chaney

I don’t usually report on studies done in mice, but this study sheds light on a particularly puzzling question: Why is fructose bad for us?

The studies are clear-cut. High fructose consumption is associated with inflammation, obesity, non-alcoholic liver disease, insulin resistance, type 2 diabetes, kidney disease, increased LDL cholesterol and triglycerides, and heart disease. Based on these associations, fructose appears to be deadly. Why would anyone want to consume it?

Yet fructose is found in virtually every fruit. In fact, fructose, also known as fruit sugar, was first isolated from fruits. Hence the name fructose. Humans have been eating fruits safely for thousands of years. Fruits are very good for us. That raises the question: “If fruits are good for us, how can fructose be bad for us?”.

An important clue can be found by looking at what the food industry has done to the American diet. Because fructose imparts a pleasurable, sweet taste to foods the food industry keeps adding it to more and more foods. As a result, dietary intake of fructose has increased 100-fold over the past two centuries. It has reached the point where fructose now accounts for almost 10% of the caloric intake in the United States.

Is It The Sugar, Or Is It The Food?

Let me expand the discussion by using a couple of graphics I developed for my book, “Slaying The Food Myths”

There Are No Sugar Villains. There Are No Sugar Heroes:

Sugar ComparisonsVirtually all sweeteners are primarily a mixture of fructose and glucose. The graphic on the left compares high fructose corn syrup (the current villain) with other “natural” sweeteners used in foods (our current heroes). High fructose corn syrup ranges from about 40% fructose to 55% fructose. The exact percentage depends on what kind of food product is being made with it.

Honey and coconut sugar are about 45% fructose. Sucrose and grape juice concentrate are around 50% fructose. Apple juice concentrate is around 60% fructose, and agave sugar comes in at a whopping 80% fructose.

In other words, if fructose is the culprit that everyone makes it out to be, “healthy” sugars are no better than high fructose corn syrup. Simply substituting a “healthy” sugar for high fructose corn syrup is unlikely to provide any meaningful benefit.

Is It The Sugar, Or Is The Food?

Apple With Nutrition LabelThis graphic shows us what a nutrition label would look like on a medium apple. I am sure that label is a wake-up call for many of you. The amount of sugar and the percentage of fructose and glucose are about the same as in an 8-ounce soda sweetened with high fructose corn syrup. The same is true for virtually every other fruit you can think of.

Now let me share one more thing you won’t hear from what I refer to as “Dr. Strangelove’s Health Blog” (You probably know the ones I am referring to). Virtually all the studies showing the bad effects of fructose consumption have been done with sodas and sugary junk foods. They haven’t been done with apples.

In fact, virtually every study looking at fruit and vegetable consumption has shown they are incredibly good for us. They lower inflammation and reduce the risk of obesity, diabetes, heart disease, and cancer. And the more the better. One study found that the health benefits of fruit and vegetable consumption topped out at around 10 servings a day.

With this background, you should now fully understand why the question “If fruits are good for us, how can fructose be bad for us?” is so perplexing.

My simplistic explanation has always been that whole foods like fruits have fiber, which slows the absorption of fructose from the intestine. Our bodies were designed to handle fructose in a safe manner when it enters the bloodstream slowly. It is taken up by the liver, converted to glucose, and then slowly metered back into the bloodstream. This provides our brain and other tissues with the glucose they need for energy without blood sugar spikes. This is how fructose is supposed to be metabolized by our bodies.

Sodas and junk foods, on the other hand, have little to slow the absorption of fructose. When lots of fructose enters the bloodstream rapidly, our “safe” metabolic pathways for handling it are overwhelmed, and it is forced into the pathways that are harmful. For example, the “excess” fructose is converted to fat by the liver, which causes inflammation, obesity, fatty liver disease, and triglyceride production.

This is, of course, simply my hypothesis for explaining the different effect of fructose in fruits and sodas. It is based on sound metabolic principles, but it is far from proven. That is why I found a recent study (C. Jang et al, Cell Metabolism, 27: 351-361, 2018) so interesting. It provides a metabolic rationale for my hypothesis.

How Was The Study Done?

Mice were fed a 1:1 mixture of fructose and glucose at doses that approximated the ranges of typical human fructose consumption. The fructose was isotopically labeled so that fructose and its metabolites could be identified by LC-MS (liquid chromatography – mass spectrometry). After feeding the mice the labeled fructose, the investigator measured the amount of fructose and its metabolites in various organs and in the portal vein, which transports sugars from the intestine to the liver for additional metabolism before they enter the bloodstream.

Is Fructose Bad For You?

intestine & liverThe first surprise was that most of the fructose was metabolized by the intestinal mucosal cells that line the small intestine rather than the liver. Previous reports had assumed that fructose was primarily metabolized by the liver because that was where most of the bad effects of fructose metabolism had been observed.

These investigators observed that fructose was primarily converted to glucose and small molecular weight metabolites by the intestinal mucosal cells before being released into the portal vein, where they were transported to the liver. However, there was a strong dose response effect.

  • At low fructose doses, 90% of fructose was metabolized by intestinal mucosal cells before being released to the liver.
  • At high fructose doses, only 70% of fructose was metabolized by intestinal mucosal cells.
  • That means at high fructose doses the amount of fructose reaching the liver unchanged increases from 10% to 30%. That is a 3-fold increase!

The authors concluded:

  • “Based on these findings, we propose that the small intestine shields the liver from fructose and that excessive doses of fructose overwhelm the small intestine, spilling over to the liver where they cause toxicity.”
  • “A key difference between the health effects of fiber-rich fruits (and perhaps even fiber-rich prepared foods) and juices/sodas is their rate of intestinal fructose release.”
  • “It is likely that the appearance rate of free fructose in the small intestine plays a critical role in dictating its metabolic fate. Like the lower doses in our experiments, a slower rate of fructose appearance will result in more complete intestinal clearance, whereas higher doses and faster rates result in fructose overflow to the liver.”

This study needs to be confirmed, and the mechanism may be entirely different in humans. However, whether mechanism is the same in mice and humans is immaterial. We already know that fructose in sodas and junk foods exerts a very different effect on our health than fructose in fruits and other fiber-containing foods.

Despite what Dr. Strangelove tells you, fructose is not bad for you. It isn’t the problem. It is sodas and junk foods containing high-fructose corn syrup that are the problem. And substituting other sugars for high-fructose corn syrup doesn’t make them any better. As I showed you above, the so called “healthy” sugars are chemically and biologically indistinguishable from high-fructose corn syrup.

The Bottom Line

Previous studies have clearly shown that fructose in sodas and junk foods is bad for us, while fructose in fruits is good for us. A recent study in mice provides a metabolic explanation for this difference. The study found:

  • At low fructose doses, 90% of fructose was metabolized by intestinal mucosal cells before being released to the liver.
  • At high fructose doses, only 70% of fructose was metabolized by intestinal mucosal cells.
  • That means at high fructose doses the amount of fructose reaching the liver unchanged increases from 10% to 30%. That is a 3-fold increase!

The authors concluded:

  • “Based on these findings, we propose that the small intestine shields the liver from fructose and that excessive doses of fructose overwhelm the small intestine, spilling over to the liver where they cause toxicity.”
  • “A key difference between the health effects of fiber-rich fruits (and perhaps even fiber-rich prepared foods) and juices/sodas is their rate of intestinal fructose release.”
  • “It is likely that the appearance rate of free fructose in the small intestine plays a critical role in dictating its metabolic fate. Like the lower doses in our experiments, a slower rate of fructose appearance will result in more complete intestinal clearance, whereas higher doses and faster rates result in fructose overflow to the liver.”

This study needs to be confirmed, and the mechanism may be entirely different in humans. However, whether mechanism is the same in mice and humans is immaterial. We already know that fructose in sodas and junk foods exerts a very different effect on our health than fructose in fruits and other fiber-containing foods.

Despite what Dr. Strangelove tells you, fructose is not bad for you. It isn’t the problem. It is sodas and junk foods containing high-fructose corn syrup that are the problem. And substituting other sugars for high-fructose corn syrup doesn’t make them any better. As I showed you above, the so called “healthy” sugars are chemically and biologically indistinguishable from high-fructose corn syrup.

For more details, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Relief From Shin Splints

What Causes Shin Splints?

Author: Julie Donnelly, LMT – The Pain Relief Expert

Editor: Dr. Steve Chaney

HotJuly is here and Florida is hot! The “Snowbirds” have gone north to the cooler weather (a goal of mine!) and life is moving in the slow lane.

For me, the slow down time is giving me the opportunity to work on some big projects that are planned to bring my work to massage therapists all over the USA.  If your massage therapist is interested in expanding their techniques, please tell them to contact me so we can chat.

I’m also finishing up the editing of my newest book: “Pain-Free Golf. The Secret to Your Best Golf Game Ever!”  I’m grateful and want to give a shout out to John Ma and Rebecca Saggau for their help in making this a much better book.

This month’s topic is on Shin Splints, and next month I’ll be talking about something most people aren’t aware of…bone bruises.

I hope you enjoy all the outdoor activities that go with the month of July.

What Are Shin Splints?

If you are a runner, play any sport that involves a lot of running, or if you drive for long distances, you may have experienced pain &/or burning along the front of your leg, next to your shin bone.  This pain is commonly called Shin Splints.

I’ve searched all through the internet and while I’ve found LOTS of articles about the cause of shin splints, the definition of shin splints, and treatments such as rest, ice, various meds, etc., I’ve never found anything that resembles the self-treatment I’ve been teaching for years and that is in each of my books.

I’m going to share that self-treatment with you. A plus is the treatment for the muscle that causes shin splints is also one of the main muscles that cause plantar fasciitis.  So, you may get some pain relief that you weren’t even expecting.

What Causes Shin Splints?

The Tibialis Anterior muscle cause shin splints. The tibialis anterior muscle runs along the outside of your shin bone (the tibia bone), merges into a tendon at your lower leg, crosses over your ankle and then inserts into your arch.  When it contracts, it lifts your foot and rolls it toward the outside.  Because of these attachments, it is also a key muscle in a sprained ankle and in plantar fasciitis, but these are topics for different newsletters.

The muscle fibers are directly on your shin bone, so when they are tightening due to a repetitive strain, such as running or pressing down on the gas pedal while driving long distances, they start to tear off the bone.  You can visualize this by considering how you rip meat off a bone while eating a steak or spareribs.

As the muscle is slowly tearing away from the bone you feel pain along the entire length of the bone, and it really hurts!  Fortunately, it’s easy to release the tension in the muscle. Plus, as you’re doing the self-treatment I’m showing you, you are pressing the fibers back on to the bone, so it stops them from ripping away completely.

Relief From Shin Splints

You can get immediate relief from shin splint pain by treating your tibialis anterior muscle.

Begin to warm up the muscle by putting your leg straight out and running your opposite heel down the length of the muscle.

Right at the point where the picture is showing the model’s heel on her leg is the point where you’ll find the most sensitive trigger point.

Continue from just below your knee to just above your ankle joint.

Next kneel down as shown in the picture on the right, placing the ball at the top of the muscle and right next to your shin bone.

Notice the way his toes are bent.  This will help prevent your arch from feeling like it’s going to cramp as the muscle pulls on the insertion point

Begin to move your leg so the ball is rolling down toward your ankle.  Stop when you find a tight point.

When you get to your ankle you can roll back up toward your knee again.  Ultimately it won’t hurt, but if it’s especially painful in the beginning just lighten up on the pressure.  You may even need to lift your leg off the ball at first which will allow blood to come into the muscle fiber and help lessen the tension.

This technique has helped so many people over the years, I know it will help you too!

How To Treat Yourself For Pain Relief

I’ve written several books and programs that teach you how to self-treat for pain from your head to your feet. The Shin Splint treatment is just one technique, and if you’ve been receiving this newsletter for a long time, you’ve seen many others.

My books are a good resource and will explain why muscles are causing your pain or discomfort, and how you can stop it fast.

Wishing you well,

Julie Donnelly

www.FlexibleAthlete.com

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Do Whole Grains Reduce Inflammation?

Are Low Carb Diets Healthy Long Term?

Author: Dr. Stephen Chaney 

InflammationInflammation is a bit like Dr. Jekyll and Mr. Hyde. Acute inflammation plays a valuable role in our immune response. But chronic inflammation is a scourge. Chronic inflammation:

  • Is a key component of all the “itis” diseases.
  • Can lead to autoimmune diseases.
  • Is thought to play an important role in heart disease.
  • Is associated with many other diseases, such as diabetes, cancer, Alzheimer’s disease, and inflammatory bowel diseases (IBS).

While there are many causes of chronic inflammation, diet plays an important role. In a previous issue of “Health Tips From the Professor” I have described how an anti-inflammatory diet can quell the fires of chronic inflammation.

Fiber from unprocessed plant foods is a key component of an anti-inflammatory diet. But are all plant fibers equally effective at reducing inflammation? Here is what we know:

  • Fiber from whole grains, vegetables, and fruits have different chemical and physical characteristics and support the growth of different species of friendly bacteria in our intestines.
  • Previous studies have shown that higher intakes of dietary fiber are associated with lower risk of heart disease.
    • Studies have suggested that fiber from whole grains may be more effective than fiber from fruits and vegetables at reducing heart disease risk.
  • Chronic inflammation is highly associated with the development of heart disease. This has led to the hypothesis that fiber from whole grains may be more effective than other plant fibers at reducing chronic inflammation.
    • Some studies have supported this hypothesis, but they have all been done with middle-aged participants, not with elderly participants who characteristically have higher levels of inflammation.

The study (R Shivakoti et al, JAMA Network Open, 5(3): e225012, 2022) I will describe today was designed to:

  • Test the hypothesis that whole grain fiber is more effective than vegetable or fruit fiber at reducing inflammation.
  • Determine how important reducing inflammation is at reducing the risk of heart disease.
  • Extending these findings to an older population group.

How Was The Study Done?

Clinical StudyThe data for this study was obtained from the Cardiovascular Health Study (CHS), a study designed to characterize factors influencing cardiovascular health in American adults aged 65 years or older. This study analyzed data from 4,125 participants (40% men, 95% white) who enrolled in the CHS study from 1989 to 1990.

These participants did not have heart disease at the time they were enrolled in the study. They had an average age of 72.6 at the beginning of the study and were followed for an average of 11.9 years. During that time 1,941 (47%) of them developed heart disease.

When the participants were enrolled in the study:

  • A food frequency questionnaire was administered to them by a trained dietitian to assess their long-term usual dietary intake. This information was used to assess:
    • Their total fiber intake and…
    • Their fiber intake from various dietary sources (whole grains, vegetables, and fruits).
  • Fasting blood samples were collected and used to analyze various markers of inflammation.

A follow-up via phone was conducted every 6 months to track an initial diagnosis of cardiovascular disease.

At the end of the study, the investigators analyzed:

  • The effect of total fiber and fiber from different food sources on the risk of developing heart disease.
  • The effect of total fiber and fiber from different food sources on inflammatory markers in the blood.
  • The extent to which decreased inflammation could explain the effect of whole grain fiber on reducing heart disease.

Do Whole Grains Reduce Inflammation?

With respect to inflammation:

  • Increased intake of total fiber was associated with healthier levels of the inflammatory markers CRP, IL-1RA, and sCD163.
    • Increased intake of fiber from whole grains was associated with healthier levels of the inflammatory markers CRP, IL-6, and IL-1RA.
    • Increased intake of vegetable fiber was not significantly associated with healthier levels of any inflammatory marker.
    • Increased intake of fiber from fruits was associated with healthier levels of the inflammatory marker sCD163.

With respect to cardiovascular disease:

  • Every 5g/day increase in total fiber decreased the risk of heart disease by 5%.
    • Every 5g/day increase in fiber from whole grains decreased the risk of heart disease by 14%.
    • Increased intake of fiber from vegetables and fruits did not have a statistically significant effect on the risk of heart disease.

Finally, when the investigators did a statistical analysis to determine to extent to which the effect of whole grain fiber on inflammation, could explain its effect on heart disease, they concluded:

  • The effect of whole grain fiber on inflammation could explain only about 16% of its effect on heart disease.

In the words of the authors, “In this prospective study of older adults, higher intakes of total fiber were associated with lower levels of various inflammatory markers, and this inverse association was primarily due to cereal fiber intake. Vegetable and fruit fiber intakes were not consistently associated with lower levels of inflammatory markers. These results suggest that specifically cereal fibers might be more effective in reducing systemic infection, which will need to be tested in interventional studies of specific populations.

In addition, cereal fiber was associated with a lower risk of CVD, although inflammation mediated less than 20% of the observed inverse association between cereal fiber and CVD. This suggests that the association of cereal fiber is primarily due to factors … other than systemic inflammation.”

Note: This conclusion underplays the role of fruit fiber in reducing inflammation. The statement is correct in saying only whole grain fiber reduces the inflammatory markers CRP, IL-6, and IL-1RA. However, both total fiber and fruit fiber increase the anti-inflammatory marker sCD163. That is why I chose to use the term “healthier levels” rather than lower or higher levels when describing the effects of whole grain and fruit fibers on markers of inflammation.

What Does This Study Mean For You?

confusion#1: The biggest takeaway from this study is that whole grains are good for you.

  • This study shows that whole grain fiber decreases our risk of developing heart disease.
    • This is fully consistent with multiple previous studies showing that whole grains decrease the risk of heart disease.
    • Previous studies have also shown that whole grains reduce the risk of cancer and diabetes.
  • This study also suggests that whole grain fiber reduces chronic inflammation.

There are also some takeaways from this and previous studies that may not be so obvious.

#2: Fiber has many important benefits beyond its effect on inflammation. For example:

  • This study concluded that the reduction in inflammation only explained a small part of the beneficial effect of whole grain fiber on reducing heart disease risk.
  • That is because whole grain fiber also:
    • Feeds friendly bacteria that improve gut function.
    • Provides satiety that can result in reduced fat and calorie intake.
    • Binds cholesterol, which improves blood cholesterol level.
    • Slows the rate at which dietary sugar enters the bloodstream, which improves blood sugar control.

#3: Whole plant foods have many benefits beyond their fiber content.

  • This study concluded that whole grain fiber was more beneficial than fiber from fruits and vegetables at reducing inflammation and reducing the risk of heart disease.
  • Previous studies have also shown that fruit and vegetables significantly decrease the risk of heart disease, stroke, and cancer.
  • That is because whole grains and unprocessed fruits and vegetables:
    • Displace sugar, refined flour, and highly processed foods from the diet.
    • Have a lower caloric density than processed foods, making it easier to achieve a healthy weight.
    • Provide nutrients and phytonutrients not found in processed foods.
    • Support a wide variety of healthy gut bacteria.

Are Low Carb Diets Healthy Long Term?

low carb dietconfusionWhen you consider all the benefits of whole grains, fresh fruits, and vegetables, it brings us to the final take home message.

#4: Despite what Dr. Strangelove has told you, low-carb diets may not be healthy long term.

  • There are no long-term (10 or 20-year) studies of low-carb diets. We simply have no evidence to support the claim that they are healthy long term.
  • Most low-carb diets eliminate or severely limit fruits and whole grains. Considering the many health benefits they provide, it is unlikely that any diet that restricts them is healthy long term.

The Bottom Line 

A recent study looked at the effect of plant fiber on inflammation and on heart disease.

With respect to inflammation the study found:

  • Increased intake of total fiber was associated with healthier levels of the inflammatory markers CRP, IL-1RA, and sCD163.
    • Increased intake of fiber from whole grains was associated with healthier levels of the inflammatory markers CRP, IL-6, and IL-1RA.
    • Increased intake of vegetable fiber was not significantly associated with healthier levels of any inflammatory marker.
    • Increased intake of fiber from fruits was associated with healthier levels of the inflammatory marker sCD163.

With respect to cardiovascular disease:

  • Every 5g/day increase in total fiber decreased the risk of heart disease by 5%.
  • Every 5g/day increase in fiber from whole grains decreased the risk of heart disease by 14%.
    1. The biggest takeaway from this study is that whole grains are good for you.

 Other takeaways from this and previous studies are:

2) Fiber has many important benefits beyond its effect on inflammation.

3) Whole plant foods have many benefits beyond their fiber content.

4) Despite what Dr. Strangelove has told you, low-carb diets may not be healthy long term.

For more details on this study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Does Low Vitamin D Make You Weak?

Why Is Vitamin D Research So Controversial?

Author: Dr. Stephen Chaney

vitamin dMillions of Americans lose muscle strength as they age, something called sarcopenia. This is not a trivial matter. Loss of muscle mass:

  • Leads to loss of mobility. It can also make it difficult to do simple things like lifting your grandchild or carrying a bag of groceries.
  • Increases your risk of falling. This often leads to serious fracture which increases your of dying prematurely. In fact, bone fractures increase your risk of dying by 3-fold or more. Even in those who recover their mobility and quality of life may never be the same.
  • Lowers your metabolic rate. This increases your risk of obesity and all the diseases that are associated with obesity.

Loss of muscle strength as we age is preventable. There are several things we can do to preserve muscle strength as we age, but in today’s article I will focus on the effect of vitamin D on muscle strength.

What if something as simple as preventing vitamin D deficiency could improve muscle strength as we age? That idea has been around for a decade or more. But, for reasons I will detail below, it has proven controversial. Let me start by sharing a recent study on vitamin D and muscle strength (N Aspell et al, Clinical Investigations in Ageing, volume 2019:14, pages 1751-1761).

How Was The Study Done?

Clinical StudyThe data for this study came from 4157 adults who were enrolled in the English Longitudinal Study On Aging. Participants in this study were all over the age of 60 and were still living in their own homes. The general characteristics of the study population were:

  • Their average age was 69.8 with 45% male and 55% female.
  • While 76% of the participants rated their health as “good” or above
    • 73% were overweight or obese.
    • 54% had a longstanding disease that limited mobility.
    • 29% were taking multiple medications.

Serum 25-hydroxy vitamin D levels were determined as a measure of vitamin D status.

  • 22% of the participants were vitamin D deficient (<30 nmol/L 25-hydroxy vitamin D).
  • 34% of the participants were vitamin D insufficient (between 30 and 50 nmol/L 25-hydroxy vitamin D).
  • 46% of the participants had adequate vitamin D status (>50 nmol/L 25-hydroxy vitamin D).

Muscle strength was assessed by a handgrip strength test with the dominant hand. Muscle performance was assessed with something called the short physical performance battery (SPPB), consisting of a walking speed test, a repeated chair raise test, and a balance test.

Does Low Vitamin D Make You Weak?

When the data on handgrip strength were analyzed:

  • Only 22% of the participants who had adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.
    • The relationship between vitamin D status and handgrip strength was highly significant (p<001).
    • The beneficial effect of vitamin D status on handgrip strength plateaued at around 55-69 nmol/L 25-hydroxy vitamin D. In other words, you need adequate vitamin D status to support muscle strength, but higher levels provide no additional benefit.

When the data on muscle performance (the SPPB test) were analyzed:

  • Only 8% of the participants who had adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.
    • The relationship between vitamin D status and muscle performance was also highly significant (p<001).
    • The beneficial effect of vitamin D status on muscle performance also plateaued at around 55-69 nmol/L 25-hydroxy vitamin D.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

Why Is Vitamin D Research So Controversial?

ArgumentYou can be forgiven if you are saying to yourself: “I’ve heard this sort of thing before. I see a blog or headline claiming that vitamin D has a certain benefit, but it’s usually followed by later headlines saying those claims are false. Why can’t the experts agree? Is all vitamin D research bogus?”

The relationship between vitamin D status and muscle strength is no different.

  • Many, but not all, studies looking at the association between vitamin D status and muscle strength find that vitamin D status affects muscle strength.
  • However, many randomized, placebo-controlled clinical trials looking at the effect of vitamin D supplementation on muscle strength have come up empty.

A meta-analysis (L Rejnmark, Therapeutic Advances in Chronic Disease, 2: 25-37, 2011) of randomized, placebo-controlled clinical trials of vitamin D supplementation and muscle strength provides insight as to why so many of them come up empty.

The meta-analysis combined data from 16 clinical trials. The conclusions were similar to what other meta-analyses have found:

  • Seven of the studies showed a benefit of vitamin D supplementation on muscle strength. Nine did not.
  • When the data from all 16 studies were combined, there was only a slight beneficial effect of vitamin D supplementation on muscle strength.

However, it was in the discussion that the reason for these discrepancies became apparent. There were three major deficiencies in study design that were responsible for the discrepancies.

1) There was a huge difference in study design.

  • The subjects were of different ages, genders, and ethnicity.
  • The dose of vitamin D supplementation varied.
  • Different measures of muscle strength and performance were used.

Until the scientific and medical community agree on a standardized study design it will be difficult to obtain consistent results.Garbage In Garbage Out

While this deficiency explains the variation in outcomes from study to study, there are two other deficiencies in study design that explain why many of the studies failed to find an effect of vitamin D on muscle strength. I call this “Garbage In, Garbage Out”. Simply put, if the study has design flaws, it may be incapable of detecting a positive effect of vitamin D on muscle strength.

2) Many of the studies did not measure vitamin D status of the participants at the beginning of the study.

  • The results of the study described above show that additional vitamin D will be of little benefit for anyone who starts the study with an adequate vitamin D status.
  • In the study above 46% of the participants had adequate vitamin D status. This is typical for the elderly community. When almost 50% of the participants in a study have adequate vitamin D status at the beginning of a study it becomes almost impossible to demonstrate a beneficial effect of vitamin D supplementation on any outcome.

It is essential that future studies of vitamin D supplementation focus on participants who have low vitamin D status. Otherwise, you are almost guaranteeing a negative outcome.

3) Most of the studies ignored the fact that vitamin D status is only one of three factors that are essential for muscle strength.

  • In the case of muscle strength, especially in the elderly, the three essentials are vitamin D, protein, and exercise. All three are needed to maintain or increase muscle strength. Simply put, if one is missing, the other two will have little or no effect on muscle strength. Unfortunately, you cannot assume that exercise and protein intake are adequate in older Americans:
  • Many older adults don’t get enough exercise because of physical limitations.

Unfortunately, many clinical studies on the effect of vitamin D supplementation and muscle strength fail to include exercise and adequate protein intake in the study. Such clinical trials are doomed to failure.

Now you know why vitamin D research is so controversial. Until the scientific and medical community get their act together and perform better designed experiments, vitamin D research will continue to be controversial and confusing.

What Does This Mean For You?

Old Man Lifting WeightsLoss of muscle mass as we age is not a trivial matter. As described above, it:

  • Leads to loss of mobility.
  • Increases your risk of falling. This often leads to serious fractures which increase your risk of disability and death.
  • Lowers your metabolic rate, which increases your risk of obesity and obesity-related diseases.

So, what can you do prevent loss of muscle mass as you age? The answer is simple:

  • Aim for 25-30 grams of high-quality protein in each meal.
    • That protein can come from meat, fish, eggs, or vegetable sources such as beans, nuts, and seeds.
    • That doesn’t mean you need to consume an 8-ounce steak or a half chicken. 3-4 ounces is plenty.
    • However, it does mean you can’t subsist on green salads and leafy greens alone. They are healthy, but you need to include a good protein source if you are going to meet your protein needs.
  • Aim for 150 minutes of moderate intensity exercise per week.
    • At least half of that exercise should be resistance exercise (lifting weights, for example).
    • If you have physical limitations, consult your doctor and work with a physical therapist or personal trainer to design resistance exercises you can do.
    • Aim for a variety of resistance exercises. You will only strengthen the muscles you exercise.
  • Aim for an adequate vitamin D status.
    • Start with a multivitamin containing at least 800 IU of vitamin D3.
    • Because there is large variation in the efficiency with which we convert vitamin D to 25-hydroxy vitamin D, you should get your serum 25-hydroxyvitamin D tested on a yearly basis. Your health professional can tell you if you need to take larger amounts of vitamin D3.
    • This study suggests that a serum 25-hydroxy vitamin D level of 55-69 nmol/L is optimal, and higher levels provide no additional benefit. That means there is no need to take mega-doses of vitamin D3 unless directed by your health professional.

The Bottom Line 

A recent study looked at the effect of vitamin D status on muscle strength and performance in a healthy population with an average age of 69.

When they looked at handgrip strength:

  • Only 22% of the participants with an adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.

When they looked at muscle performance:

  • Only 8% of the participants with an adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

If we look at the research more broadly, there are three factors that are essential for maintaining muscle mass as we age: exercise, protein, and vitamin D. Therefore, my recommendations are to:

1)  Aim for 25-30 grams of high-quality protein in each meal.

2) Aim for 150 minutes of moderate intensity exercise per week. At least half of that exercise should be resistance exercise.

3) Aim for an adequate vitamin D status (>50 nmol/L of serum 25-hydroxy vitamin D). A good place to start is with a multivitamin providing at least 800 IU of vitamin D3.

For more details on my recommendations and a discussion of why studies on vitamin D supplementation are often confusing, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease

 

Health Tips From The Professor