Do Bad Genes Doom You To Bad Health?

The Influence Of Genetics And Diet On Type 2 Diabetes

Author: Dr. Stephen Chaney 

Does it ever feel like you have drawn the short straw?

Everyone in your family has succumbed to heart disease, diabetes, or cancer at a young age. Are you doomed to the same fate?

You ordered a DNA test. It sounded like fun. But when the gene report came back it said you had a “bad” genetic profile. You were told you are at high risk of diabetes, heart attack, stroke, cancer, or dementia. Are you doomed to a short and sickly life?

In both cases, you are probably wondering, “Is there anything I can do to improve my odds of a healthy life? What if I lost some of those extra pounds, exercised more, and ate a healthier diet? Would that make a difference?”

The study (J Merino et al, PLoS Medicine 19(4): e1003972, April 26, 2022) I will describe today was designed to answer these questions.

But before I describe the study, I should probably cover what I call Genetics 101: “How Genes Affect Your Health”.

Genetics 101: How Genes Affect Your Health

GeneticistIf you studied genetics in school, you probably learned about diseases like sickle cell anemia, which is caused by a single mutation in a single gene. If you get two copies of the “bad” gene, you will have sickle cell anemia. If you get one copy of the “bad” gene and one copy of the normal gene, you have sickle cell trait, which is much less severe.

Simply put, you either have the disease or you don’t. It’s dependent on your genetics, and you can’t do much about it.

If you know someone who has been treated for breast cancer, you are probably familiar with a more complex relationship between genetics and health. There are several “bad” genes that increase the risk of breast cancer. And knowing which gene is involved is important for selecting the best treatment regimen.

But most of the diseases that shorten our lives (like diabetes, heart disease, most cancers, and dementia) are what we call polygenetic diseases. Simply put, that means that there are dozens of genes that increase the risk of these diseases. Each gene makes a small contribution to the increased risk. So, we can only measure the genetic contribution to these diseases by measuring hundreds of mutations in dozens of genes, something called a polygenetic risk score.

The study I will be describing today looked at the relative effect of genetics (measured as the type 2 diabetes polygenic risk score) and diet quality (measured as the Alternative Healthy Eating Index (AHEI)) on the risk of developing type 2 diabetes.

How Was This Study Done?

clinical studyThe data for this study were obtained from 3 long-term clinical studies conducted in the United States – the Nurses’ Health Study (121,700 participants), the Nurses’ Health Study II (116,340 participants), and the Health Professionals Follow-Up Study (51,529 participants).

These studies measured lifestyle factors (including diet) every 4 years and correlated them with disease outcomes over 20+ years.

The study I will be discussing today was performed with 35,759 participants in these 3 studies for whom DNA sequencing data was available.

  • The DNA sequence data were used to generate a type 2 diabetes polygenic risk score for each participant in this study.
  • Food frequency questionnaires obtained every 4 years in these studies were used to calculate the Alternative Healthy Eating Index (AHEI) score for each participant.
    • The AHEI is based on higher intake of fruits, whole grains, vegetables, nuts and legumes, polyunsaturated fatty acids, long-chain omega-3 fatty acids, moderate intake of alcohol, and lower intake of red and processed meats, sugar sweetened drinks and fruit juice, sodium, and trans-fat).

The investigators used these measurements to estimate the relative effect of genetics and diet quality on the risk of developing type 2 diabetes.

The Influence Of Genetics And Diet On Type 2 Diabetes 

Genetic TestingThe participants were divided into low, intermediate, and high genetic risk based on their type 2 diabetes polygenic risk score.

Compared with low genetic risk:

  • Intermediate genetic risk increased the risk of developing type 2 diabetes by 26%.
  • High genetic risk increased the risk of developing type 2 diabetes by 75%.

Put another way, each 1 standard deviation increase in the polygenetic risk score:

  • Increased the risk of developing type 2 diabetes by 42%.

Simply put, bad genes can significantly increase your risk of developing type 2 diabetes. That’s the bad news. But that doesn’t mean you should think, “Diabetes is in my genes. There is nothing I can do.”

The investigators also divided the participants into those who had a high-quality diet, those who had an intermediate quality diet, and those who had a low-quality diet based on their AHEI (Alternative Healthy Eating Index) score.

Finally, they divided the participants into groups depending on their BMI, a measure of obesity.

Compared to an obese person consuming a low-quality diet, a lean person consuming a high-quality diet:

  • Reduced their risk of developing type 2 diabetes by around 43% for each category of genetic risk.
  • More specifically, a lean person consuming a high-quality diet reduced their risk of developing type 2 diabetes:
    • By 41% if they were at low genetic risk.
    • By 50% if they were at intermediate genetic risk.
    • By 38% if they were at high genetic risk.

The investigators then made a statistical adjustment to remove BMI from their calculations, so they could focus on Mediterranean Diet Foodsthe effect of diet alone on the risk of developing type 2 diabetes.

Compared to a low-quality diet, a high-quality diet:

  • Reduced the risk of developing type 2 diabetes by around 33% for each category of genetic risk.
  • More specifically, a high-quality diet reduced the risk of developing type 2 diabetes:
    • By 31% for those at low genetic risk.
    • By 39% for those at intermediate genetic risk.
    • By 29% for those at high genetic risk.

Looking at it another way:

  • When people at high genetic risk consumed a high-quality diet, their risk of developing type 2 diabetes was only 13% higher than people at intermediate genetic risk who consumed a low-quality diet (such as the typical American diet).
  • When people at intermediate genetic risk consumed a high-quality diet, their risk of developing type 2 diabetes was 5% less than people at low genetic risk who consumed a low-quality diet.

Simply put:

  • If you are at intermediate genetic risk, a high-quality diet may completely reverse your risk of developing type 2 diabetes.
  • If you are at high genetic risk, a high-quality diet can partially reverse your risk of developing type 2 diabetes.

In short, the good news is that bad genes do not doom you to type 2 diabetes.

  • The investigators did not provide similar information for the effect of an ideal weight on the risk of developing type 2 diabetes, but it is likely that the combination of diet plus weight management would result in an even more significant reduction in risk of developing type 2 diabetes for individuals in the even the highest risk category.

The authors concluded, “These data provide evidence for the independent associations of genetic risk and diet quality with incident type 2 diabetes and suggest that a healthy diet is associated with lower diabetes risk across all levels of genetic risk.”

Do Bad Genes Doom You To Bad Health?

Bad GenesAt the beginning of this article I posed the question, “Do bad genes doom you to bad health?”

Based on this study, the good news is that bad genes don’t doom you type 2 diabetes. And just because most of your relatives are diabetic doesn’t mean that must be your fate.

  • This study shows that a healthy diet significantly reduces your risk of developing type 2 diabetes at every genetic risk level.
  • And the study suggests that a healthy diet plus a healthy weight is even more beneficial at reducing your risk of type 2 diabetes.
  • While not included in this study, other studies have shown that exercise also plays a role in reducing type 2 diabetes risk.

None of this information is new. What is new is that a healthy diet is equally beneficial at reducing type 2 diabetes risk even in individuals with a high genetic risk of developing the disease. Simply put, you can reverse the effects of bad genes.

“And what is this magic diet?”, you might ask. In this study, it was based on AHEI score. Someone with a high AHEI score consumes:

  • Lots of fruits, whole grains, vegetables, nuts and legumes, polyunsaturated fatty acids, and long-chain omega-3 fatty acids.
  • Moderate or no amounts of alcohol.
  • Little or no red and processed meats, sugar sweetened drinks, fruit juices, sodium, and foods with trans-fat.

Any whole food, primarily plant-based diet from vegan to Mediterranean or DASH fits the bill.

Finally, while this study focused just on type 2 diabetes, other studies have come to similar conclusions for other diseases.

Should You Get Your DNA Tested?

If you are looking for guidance on how to reduce your risks, the answer is, “No”. In this study, the same diet and lifestyle changes lowered the risk of type diabetes at every genetic risk level. Despite what some charlatans may tell you, there is no special diet or magic potion for people with a high genetic risk for developing type 2 diabetes.

If you are looking for motivation, the answer may be, “Yes”. If knowing you are at high risk makes it more likely that you will make the diet and lifestyle changes needed to lower your risk of type 2 diabetes, a DNA test may be just what you need

The Bottom Line

If a serious disease runs in your family or if you have had your DNA tested and found out you are at high risk for some disease, you are probably wondering whether there is anything you can do or whether your bad genes have doomed you to a short and sickly life.

A recent study answered that question for type 2 diabetes. It showed a healthy diet significantly reduces the risk of type 2 diabetes even in people at high genetic risk of developing the disease.

Other studies have come to similar conclusions for other diseases. In short, bad genes don’t doom you to bad health.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

_____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Are All Plant-Based Diets Healthy?

Why Are Plant-Based Diets Healthy?

Author: Dr. Stephen Chaney

Unless you are like Rip van Winkle and have been asleep for the past 30 years, you have probably heard that plant-based diets are good for you. In fact, that advice is sound. It is based on multiple long-term studies.

But you may still be hesitant to make the switch. You are probably wondering if you have to be a vegan purist to benefit from a plant-based diet. If so, you are wondering whether you can make that drastic a change in your diet. Or, you may have already decided “that is a bridge too far” and don’t want to even consider it.

So, one important question is, “Do you have to go vegan to benefit from a plant-based diet?”

On the other hand, “Big Food, Inc” has made it easier than ever to switch to more “plant-based” eating. After all, sugar comes from plants. And highly processed grains come from plants. Add a few chemicals and you can come up with an endless supply of highly processed plant-based foods.

So, another important question is, “Can a diet of highly processed plant-based foods be as healthy as a diet of whole, unprocessed plant-foods?”

The study (Y. Wang et al., Nutrition Journal, 22: 46, 2023) I am reviewing today was designed to answer these two questions. It also represents the first meta-analysis to combine data from studies on the effects of plant-based diets on diabetes, heart disease, cancer, and mortality into a single study.

How Was The Study Done?

clinical studyThe investigators performed a meta-analysis of 76 studies with 2,230,443 participants that looked at the associations of plant-based dietary patterns and the incidence of type 2 diabetes, cardiovascular disease, cancer, and mortality among adults 18 years or older.

The characteristics of study participants ranged from:

  • 25 to 87 years old.
  • BMI of 20 to 30.

And the duration of the studies within the meta-analysis ranged from 2 to 36 years.

The adherence to plant-based diets was defined as higher consumption of plant-based foods and lower consumption or exclusion of animal-based foods.

The meta-analysis also included studies looking at the effect of changing from a more animal-based to a more plant-based dietary pattern.

The meta-analysis included studies looking at the benefit of vegan and vegetarian diets. In terms of participants these studies represented just over 50% of the data in the meta-analysis. So, this meta-analysis was ideally positioned to determine whether vegan and vegetarian diets were more beneficial than other primarily plant-based dietary patterns that included some animal foods.

The methodology used to classify diets as primarily plant-based varied from study to study. But in each case the study participants were divided into quartiles ranging from consuming the most plant-based diet to consuming the least plant-based diet.

The study then compared study participants with the highest adherence to plant-based diets to those with the lowest adherence to plant-based diets with respect to type 2 diabetes, cardiovascular disease, cancer, and mortality.

Finally, the study also compared adherence to healthy plant-based dietary patterns (whole or minimally processed fruits, vegetables, whole grains, beans, nuts, and seeds) to unhealthy plant-based dietary patterns (foods and drinks with added sugar, highly processed plant foods, and starchy vegetables).

Are Plant-Based Diets Healthy?

When comparing highest to lowest adherence to plant-based dietary patterns the risk of:

  • Type-2 diabetes was reduced by 18%.
  • Cardiovascular disease was reduced by 10%.
  • Cancer was reduced by 12%.
  • Mortality was reduced by 16%.

In short, all the news was good for primarily plant-based dietary patterns.

Are All Plant-Based Diets Healthy?

Increased adherence to a healthy plant-based dietary pattern (That term is defined in the methods section above) was associated with an even better reduction in disease risk. For example:

  • Type-2 diabetes was reduced by 21%.
  • Cardiovascular disease was reduced by 15%.
  • Cancer was reduced by 13%.
  • Mortality was reduced by 14%, which was statistically indistinguishable from the reduction in mortality associated with all plant-based dietary patterns above.

Factory FarmIn contrast, increased adherence to an unhealthy plant-based dietary pattern was associated with increased risks of disease. For example:

  • The risk of type 2 diabetes increased by 8%.
  • The risk of cardiovascular disease increased by 14%.
  • The risk of cancer increased by 7%.
  • The risk of mortality increased by 16%.

In short, plant-based dietary patterns consisting of whole or minimally processed plant foods are good for you. Plant-based dietary patterns consisting of highly processed plant foods are not.

Are Vegan and Vegetarian Diets More Beneficial Than Other Plant-Based Dietary Patterns?

Mediterranean Diet FoodsTwenty seven of the studies within this meta-analysis compared vegetarian or vegan dietary patterns with animal-based dietary patterns. These studies had 1,343,967 participants, which amounts to 57% of the participants in the meta-analysis.

Thus, this meta-analysis was well positioned to determine relative benefits of vegan and vegetarian diets compared to other primarily plant-based dietary patterns that include some animal foods. The investigators reported that:

  • The risk reduction for type 2 diabetes was greater in studies with vegan and vegetarian diets than in studies with other primarily plant-based diets.
  • No other statistically significant benefits were observed for vegan and vegetarian diets compared to other primarily plant-based diets.

In short, you don’t need to become a vegan to experience the health benefits of a plant-based diet.

In contrast, increased adherence to an unhealthy plant-based dietary pattern was associated with increased risks of disease. For example:

  • The risk of type 2 diabetes increased by 8%.
  • The risk of cardiovascular disease increased by 14%.
  • The risk of cancer increased by 7%.
  • The risk of mortality increased by 16%.

In short, plant-based dietary patterns consisting of whole or minimally processed plant foods are good for you. Plant-based dietary patterns consisting of highly processed plant foods are not.

What If You Change From An Animal-Based To A Plant-Based Diet?

Food ChoicesIf you have been consuming an animal-based diet for years, you may be wondering whether it is too late to change. Has the damage already been done?

Six studies within this meta-analysis examined the effect of changing from an animal-based diet to a plant-based diet on type 2 diabetes and mortality. Changing to a more plant-based dietary pattern:

  • Reduced diabetes by 17% and mortality by 5%.

In short, it’s never too late to switch to a more plant-based dietary pattern.

Why Are Plant-Based Diets Healthy?

The short answer is that we don’t know for sure, but the authors mentioned several popular hypotheses.

  • Obesity is a risk factor for type 2 diabetes, cardiovascular disease, and certain types of cancer. And studies have shown that people consuming plant-based diets tend to weigh less.
  • The increased fiber content and higher ratio of polyunsaturated fats to saturated fats lower cholesterol levels and improve blood lipid profiles, which are associated with a lower risk of cardiovascular disease.
  • Plant-based diets are anti-inflammatory, which reduces the risk of all three diseases.
  • Plant foods are rich in polyphenols and other phytonutrients that are associated with reduced risk of cardiovascular disease, lower blood pressure, and improvements in insulin sensitivity.
  • Plant foods are metabolized by gut bacteria to metabolites that are associated with reduced risk of type 2 diabetes and cardiovascular disease.
  • Plant foods support healthy gut bacteria associated with a reduced risk of several diseases.
  • Finally, plant-based dietary patterns are associated with no or reduced consumption of red and processed meats, which increase the risk of type 2 diabetes, cardiovascular disease, and certain types of cancer.

For a more detailed discussion read the article).

What Does This Study Mean For You?

The authors of this study concluded, “Higher adherence to plant-based dietary patterns, especially from healthy sources, may be universally beneficial for the primary prevention of type 2 diabetes, cardiovascular disease, cancer, and mortality. The current study provides further evidence in support of current recommendations that emphasize consuming high-quality plant-based foods for achieving optimal health.”

“Future studies are needed to elucidate…mechanistic pathways linking plant-based diets with multiple disease outcomes.”

I would just like to emphasize a few points:

  • These are all association studies. It takes decades for diseases like diabetes, heart disease, and cancer to develop. So, it is impossible to confirm these findings with double blind, placebo-controlled studies. However, when you have 76 studies with over 2 million participants all pointing to the same conclusion, it is hard to ignore the findings.
  • The good news is that you don’t have to become a vegan to experience these benefits. There are many healthy primarily plant-based diets available. Choose the one that best fits your food preferences and lifestyle.
  • Be aware that whatever diet you choose, Big Food Inc is only too happy to provide you with highly processed foods that fit that dietary pattern. Don’t fall for that trap. Stick with whole or minimally processed plant foods.
  • If your current diet isn’t the best, it is never too late to switch to a healthier primarily plant-based diet.

The Bottom Line

A recent meta-analysis of 76 studies with 2,230,443 participants looked at the associations of plant-based dietary patterns and the incidence of type 2 diabetes, cardiovascular disease, cancer, and mortality among adults 18 years or older.

The authors of the study concluded, “Higher adherence to plant-based dietary patterns, especially from healthy sources, may be universally beneficial for the primary prevention of type 2 diabetes, cardiovascular disease, cancer, and mortality. The current study provides further evidence in support of current recommendations that emphasize consuminh high-quality plant-based foods for achieving optimal health.”

Other key points from the study are:

  • These are all association studies. It takes decades for diseases like diabetes, heart disease, and cancer to develop. So, it is impossible to confirm these findings with double blind, placebo-controlled studies. However, when you have 76 studies with over 2 million participants all pointing to the same conclusion, it is hard to ignore the findings.
  • The good news is that you don’t have to become a vegan to experience these benefits. There are many healthy primarily plant-based diets available. Choose the one that best fits your food preferences and lifestyle.
  • Be aware that whatever diet you choose, Big Food Inc is only too happy to provide you with highly processed foods that fit that dietary pattern. Don’t fall for that trap. Stick with whole or minimally processed plant foods.
  • If your current diet isn’t the best, it is never too late to switch to a healthier primarily plant-based diet.

For more details about how the authors came to these conclusions and what they mean for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

_______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 ______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Is Diabetes Increasing In Our Children?

Why Is Diabetes Increasing In Our Children? 

Author: Dr. Stephen Chaney

Last week I shared a study documenting the alarming increase in ultraprocessed food consumption by our children and the effect it was having on their health (https://www.chaneyhealth.com/healthtips/are-we-killing-our-children-with-kindness/). For example, childhood obesity is closely linked to ultraprocessed food consumption.

In case you don’t understand why that is, here is what I said last week: “Because ultraprocessed foods are made in a factory, not grown on a farm:

  • They are high in fat, sugar, and refined carbohydrates. That means they have a high caloric density. Each bite has 2-3 times the calories found in a bite of fresh fruits and vegetables.
  • Even worse, the food industry has weaponized our natural cravings for sweet, salty, and fatty foods. They feed their prototypes to a series of consumer tasting panels until they find the perfect blend of sugar, salt, and fat to create maximum craving.
  • And if that weren’t enough, they add additives to create the perfect flavor and “mouth appeal”.
    • It is no wonder that clinical studies have found a strong correlation between high intake of ultraprocessed food and obesity in both children and adults.
    • It is also no wonder that the rate of childhood obesity has almost quadrupled in the last 40 years.”

Unfortunately, whenever you see an increase in obesity, type 2 diabetes is not far behind. Several studies have reported a dramatic increase in type 2 diabetes in our children over the last 20 years.

Because diabetics can manage their blood sugar levels with insulin and/or a variety of drugs, many people consider it as just an inconvenience. Nothing could be further from the truth. Diabetes is a deadly disease, and it is even deadlier when it appears early in life.

You probably already know that long-term complications of diabetes include heart disease and irreversible damage to nerves, kidneys, eyes, and feet. But you may not have known that childhood diabetes is more dangerous than diabetes in adults because:

  • It is more challenging to manage in children.
  • The complications of diabetes start to show up much earlier in life and affect quality of life at a much earlier age. For example:
    • Cardiovascular events occur 15 years earlier in someone with diabetes.
    • On average, a 50-year-old with diabetes will die 6 years earlier than someone without diabetes.
    • On average, a 10-year-old with diabetes will die 19 years earlier than a child without diabetes.

The study (JM Lawrence et al, JAMA, 326: 717-727, 2021) I will discuss today is the largest and most comprehensive study of childhood diabetes to date.

How Was This Study Done?

Clinical StudyThe data for this study were obtained from the SEARCH For Diabetes In Youth Study. This study collected data on physician-diagnosed cases of diabetes in 3.47 million children ages 19 or younger from 6 geographical areas in the US in 2001, 2009, and 2017.

The 6 geographical areas were:

  • Southern California (7 counties, including Los Angeles).
  • Colorado (14 counties, including Denver).
  • Ohio (8 counties, including Cincinnati)
  • South Carolina (4 counties, including Columbia).
  • Washington State (5 counties, including Seattle).
  • Indian Health Service users in select areas of Arizona and New Mexico.

The data on diabetes diagnoses were obtained by creating active surveillance networks composed of pediatric and adult endocrinologists, other clinicians, hospitals, and health plans in the study areas.

Is Diabetes Increasing In Our Children?

IncreaseTo answer this question let’s start with a historical perspective:

  • In 1950 obesity in US children was rare and type 2 diabetes in children was practically unknown.
    • Since then, obesity rates have skyrocketed, and type 2 diabetes has followed along behind it.
  • Between 1925 and 1950 the prevalence of type 1 diabetes in US children remained constant, but it has been steadily increasing since 1950.
    • Type 1 diabetes remains more prevalent than type 2 diabetes in our children, but the prevalence of type 2 diabetes has been increasing faster than type 1 diabetes.

Now let’s look at the results from the SEARCH For Diabetes In Youth Study:

Prevalence of Type 2 Diabetes:

  • The prevalence of type 2 diabetes in US children aged 10-19 increased from 0.34/1000 youths in 2001, to 0.46/1000 youths in 2009, to 0.67/1000 youths in 2017.
    • This is a 94% increase between 2001 and 2017. Put another way, the prevalence of type 2 diabetes in our children has almost doubled in just 16 years!
    • The greatest increase was seen among Black (0.85/1000 youths), Hispanic (0.57/1000 youths), and American Indian (0.42/1000 youths) population groups.
  • These data are consistent with 3 previous studies reporting a doubling of type 2 diabetes in children over similar time periods.

Note: Since data collection ended in 2017, this study does not take into account the increase in type 2 diabetes caused by increased body weight and reduced activity in children during the pandemic. There are no firm data on the increase in type 2 diabetes in children during the pandemic, but some hospitals have reported increases of 50% to 300% in new diagnoses of type 2 diabetes in 2020.

Prevalence of Type 1 Diabetes:

  • The prevalence of type 1 diabetes in US children aged 19 and younger increased from 1.48/1000 youths in 2001, to 1.93/1000 youths in 2009, to 2.15/1000 youths in 2017.
  • This is a 45% increase between 2001 and 2017.
    • The greatest increase was seen among White (0.93/1000 youths), Black (0.89/1000 youths), and Hispanic (0.59/1000 youths) population groups.
    • These data are consistent with a similar study of type 1 diabetes in children in Holland.

In summary:

  • This study documents a dramatic increase in the prevalence of both type 1 and type 2 diabetes in US children between 2001 and 2017.
  • Type 2 diabetes is still less prevalent than type 1 diabetes in US children, but it is increasing twice as fast.

Why Is Diabetes Increasing In Our Children?

Question MarkWhen it comes to type 2 diabetes, the experts agree:

  • The increase in type 2 diabetes in children is directly related to the obesity epidemic, which is now impacting our children. The obesity epidemic is, in turn, caused by:
    • Decreased exercise. Video games and social media have replaced actual games played outside.

However, when it comes the increase in type 1 diabetes, the experts are perplexed. There is no easy explanation. Let’s start with the basics:

  • Type 1 diabetes is an autoimmune disease. With type 1 diabetics, their immune system starts attacking the insulin-producing beta cells in their pancreas. Consequently, they lose the ability to produce insulin.
  • The autoimmune response seen in type 1 diabetes is caused by a combination of genes and environment. Specifically:
    • Certain genes predispose to type 1 diabetes. However:
      • Only some people with those genes develop type 1 diabetes.
      • Our genetics doesn’t change with time, so genetics cannot explain the increases in type 1 diabetes we are seeing.
  • That leaves the environment. There are many hypotheses about how our children’s environment influences their risk of developing type 1 diabetes. However:
    • Some of these hypotheses involve things that have not changed over the last 15-20 years. They cannot explain the increase in type1 diabetes we are seeing in children.
    • Some of these hypotheses are not supported by good data. They are speculative.

With that in mind, I will list the top 5 current hypotheses and evaluate each of them.

#1: The viral infection hypothesis: Basically, this hypothesis states that type 1 diabetes can be triggered by child with flucommon viral infections such as the flu.

  • This is a plausible hypothesis. Whenever our immune system is stimulated by invaders it sometimes goes rogue and triggers autoimmune responses.
  • It is also supported by good data. The onset of type 1 diabetes is often associated with a viral infection in genetically susceptible children.
  • However, prior to the pandemic viral infections have been constant. They haven’t changed over time. Therefore, they cannot explain an increase in type 1 diabetes between 2001 and 2017.

#2: The hygiene hypothesis: Basically, this hypothesis states that when we raise our children in a sterile environment, their immune system doesn’t develop normally. Essentially the hypothesis is saying that it’s not a bad thing if your toddler eats some dirt and moldy fruits. However:

  • The data linking hygiene to food allergies is better than the data linking hygiene to autoimmune responses.
  • There is no evidence that hygiene practices have changed significantly between 2001 and 2017.

#3: The vitamin D hypothesis: Basically, this hypothesis states that vitamin D deficiency is associated with the autoimmune response that causes type 1 diabetes.

  • One of the functions of vitamin D is to regulate the immune system.
  • As I have reported previously, suboptimal vitamin D levels are associated with increased risk of developing type 1 diabetes.
  • While we know that up to 61% of children in the US have suboptimal vitamin D levels, we don’t know whether that percentage has changed significantly in recent years.

happy gut bacteria#4: The gut bacteria hypothesis: Basically, this hypothesis suggests that certain populations of gut bacteria increase the risk of developing type 1 diabetes. This is what we know.

  • Children who develop type 1 diabetes have a unique population of gut bacteria.
  • This population of gut bacteria also triggers inflammation, and chronic inflammation can lead to autoimmune responses.
  • A diet rich in highly processed foods supports growth of the same gut bacteria found in children with type 1 diabetes.
  • Consumption of highly processed foods has increased significantly in the last twenty years.

#5: The obesity hypothesis: Basically, this hypothesis suggests that obesity increases the risk of developing type 1 diabetes.

  • While the mechanism is not clear, childhood obesity is associated with both inflammatory and autoimmune diseases like type 1 diabetes.
  • Childhood obesity has increased dramatically in the past few years.

As you may have noticed, there are weaknesses to each of these hypotheses. This is why there is no current agreement among experts as to why type 1 diabetes is increasing in our children.

My guess is that none of these hypotheses can fully explain the increase in type 1 diabetes in our children, but that several of them may contribute to it.

What Can We Do?

Family Riding BicyclesWhatever the mechanism, the increase in both type 1 and type 2 diabetes in our children is troubling. Unless this trend is reversed, we may be dooming our children to short, unhealthy lives. So, what can we, as concerned parents and grandparents, do?

For type 2 diabetes, the answer is clear.

1) Reverse the dominance of ultraprocessed foods in children’s diets. Encourage the consumption of whole, unprocessed or minimally processed foods, and include lots of fresh fruits and vegetables. Set a good example as well.

2) Encourage more activity. Get them outside and moving. Create family activities that involve exercise.

3) Reverse the obesity epidemic. If we succeed in reversing the dominance of ultraprocessed foods in their diet and encouraging more activity, we can reverse the obesity epidemic without putting our children on crazy diets.

For type 1 diabetes, the answer is less clear because the cause for the increase in type 1 diabetes is uncertain. However, I will point out that:

1) Increased consumption of fresh fruits and vegetables, whole grains, and legumes supports the growth of friendly gut bacteria that reduce inflammation and the risk of autoimmune diseases. For more detail on an anti-inflammatory diet, click here.

2) Reversing the obesity epidemic also reduces inflammation and the risk of autoimmune diseases.

3) Adequate vitamin D levels reduce the risk of autoimmune diseases, including type 1 diabetes. My recommendation is to get your 25-hydroxyvitamin D levels tested and supplement with vitamin D3 as needed, especially during the winter months.

The Bottom Line

Last week I shared a study documenting the alarming increase in ultraprocessed food consumption by our children and the effect it was having on their health. For example, childhood obesity is closely linked to ultraprocessed food consumption, and the rate of childhood obesity has almost quadrupled in the last 40 years.

Unfortunately, whenever you see an increase in obesity, type 2 diabetes is not far behind. This week’s study looked at the prevalence of childhood diabetes in 3.47 million children from 6 geographical areas of the United States between 2001 and 2017. This study found:

  • The prevalence of type 2 diabetes in US children increased 94% between 2001 and 2017. It almost doubled.
  • The prevalence of type 1 diabetes in US children increased 45% between 2001 and 2017.

These statistics are tragic because diabetes is a deadly disease.

You probably already know that long-term complications of diabetes include heart disease and irreversible damage to nerves, kidneys, eyes, and feet. But you may not have known that childhood diabetes is more dangerous than diabetes in adults because:

  • It is more challenging to manage in children.
  • The complications of diabetes start to show up much earlier in life and affect quality of life at a much earlier age. For example:
    • Cardiovascular events occur 15 years earlier in someone with diabetes.
    • On average, a 50-year-old with diabetes will die 6 years earlier than someone without diabetes.
    • On average, a 10-year-old with diabetes will die 19 years earlier than a child without diabetes.

For more details about this study, why the prevalence of diabetes in US children is increasing, and what we can do about it, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease

Do Whole Grains Keep Diabetes Away?

Are Whole Grains Healthy? 

Author: Dr. Stephen Chaney

deceptionLow carb enthusiasts will tell you that carbohydrates are the villain. They tell you that cutting carbohydrates out of your diet will reduce your risk of obesity, diabetes, heart disease, and cancer.

If they limited their list of villainous foods to highly processed foods with white flour and/or added sugars, many nutrition experts would agree with them. There is widespread agreement in the nutrition community that we eat far too much of these foods.

However, I don’t have to tell you that many low carb diets also eliminate whole grains, fruits, and beans from their diets based solely on the carbohydrate content of these foods. Is this good advice? Is there any data to back up this claim?

The short answer is no. Last week I shared a study showing that fruits reduced your risk of developing type 2 diabetes.

This week I will review a study looking at the effect of whole grain consumption on the risk of developing type 2 diabetes.

How Was This Study Done?

Clinical StudyThis study combined data from women in the Nurses’ Health Study (1984-2014) and the Nurses’ Health Study II (1991-2017), and men in the Health Professionals Follow-Up Study (1986-2016). There were 158,259 women and 36,525 men in these three studies.

None of the participants had type 2 diabetes, cardiovascular disease, or cancer at the time they entered the studies.

At the beginning of each study and every 4 years later the participants were asked to fill out a food frequency questionnaire to collect information about their usual diet over the past year. Validation studies showed that the diets of the participants changed little over the interval of the studies. [Note: This is a strength of these studies. Many clinical studies only collect dietary data at the beginning of the study, so there is no way of knowing whether the participant’s diets changed over time.]

The participants in these studies were followed for an average of 24 years. They were sent follow-up questionnaires every two years to collect information on diseases they had been diagnosed with over the past two years. Participants who reported type 2 diabetes were sent a supplementary questionnaire to confirm the diagnosis.

This study measured the effect of whole grain consumption, and frequently consumed whole grain foods, on the long term (24 year) risk of developing type 2 diabetes.

The data were adjusted for multiple possible confounding variables (other factors that might affect the risk of developing type 2 diabetes) including age, ethnicity, smoking status, alcohol intake, multivitamin use, healthy eating index (a measure of how healthy the overall diet was), caloric intake, obesity, family history of diabetes, and use of oral contraceptives or postmenopausal hormones.

In addition, a stratified analysis was performed to assess the extent to which obesity, physical activity, smoking status, and family history of diabetes influenced the outcome.

In short, this was a very rigorous and well-controlled study.

Do Whole Grains Keep Diabetes Away?

Whole GrainsTotal whole grain consumption was divided into five groups ranging from 2 servings per day to < 0.1 serving per day. When participants with the highest whole grain intake were compared to those with the lowest whole grain intake:

  • Whole grain consumption was associated with a 29% lower risk of developing type 2 diabetes.
    • The association between whole grain consumption and reduced risk of developing type 2 diabetes was stronger for lean individuals (45% reduction in risk) than for overweight (34% reduction in risk) or obese individuals (23% reduction in risk).
    • The association between whole grain consumption and reduced risk of developing type 2 diabetes was not affected by physical activity, smoking status, or family history of diabetes.

When they looked at the entire range of whole grain intake among participants in the study:

  • The risk reduction for developing type 2 diabetes was nonlinear.
    • The greatest portion of risk reduction (30% decreased risk) occurred between 0 and 2 servings/day.
    • However, the reduction in risk continued to decrease at a slower rate up to 4.5 servings/day (38% decreased risk), the highest intake recorded for participants in this study.

When they looked at the most frequently consumed whole grain foods and compared the risk of developing type 2 diabetes for participants consuming one or more servings per day compared with less than 1 serving per month:

  • People consuming whole grain cold breakfast cereals were 19% less likely to develop type 2 diabetes.
  • People consuming whole grain breads were 21% less likely to develop type 2 diabetes.
  • People consuming popcorn were 8% more likely to develop type 2 diabetes.

Once again, the risk reduction was nonlinear.

  • For whole grain cold breakfast cereals risk reduction plateaued at around 0.5 servings per day.
  • For whole grain breads the greatest portion of risk reduction occurred at around 0.5 servings per day (17% decreased risk), but the reduction in risk continued to decrease at a slower rate up to 4 servings/day (28% decreased risk).
  • For popcorn, the risk reduction curve was non-linear. There was a slight, non-significant, decrease in risk at about 0.2 servings per day, followed by a steady increase in risk up to 1.75 servings per day (24% increased risk).

When they looked at less frequently consumed whole grain foods and compared the risk of developing type 2 diabetes for participants consuming two or more servings per week compared with less than 1 serving per month:

  • People consuming oatmeal were 21% less likely to develop type 2 diabetes.
  • People consuming brown rice were 12% less likely to develop type 2 diabetes.
  • People consuming added bran were 15% less likely to develop type 2 diabetes.

There were not enough people consuming these whole grains for the investigators to determine how many servings were optimal.

The authors concluded, “Higher consumption of total whole grains and several commonly eaten whole grain foods, including whole grain breakfast cereal, oatmeal, whole grain bread, brown rice, and added bran, was significantly associated with a lower risk of type 2 diabetes. These findings provide further support for the current recommendations of increasing whole grain consumption as part of a healthy diet for the prevention of type 2 diabetes.”

Are Whole Grains Healthy?

Question MarkThis is a very impressive study. As described above, it is a large (194,784 participants), long lasting (24 years), and well-designed study. With this data in mind, we can answer several important questions.

Are Whole Grains Healthy?

This study explodes the myth that you should avoid whole grains if you want to prevent diabetes. Instead, the study shows that whole grain consumption decreases your risk of developing type-2 diabetes.

I recently reviewed another large, well-designed study showing that whole grain consumption reduces your risk of dying from heart disease, cancer, and all causes combined.

So, clearly whole grains are good for you. They should be an important part of your diet.

Which Whole Grains Are Healthy?

According to this study, whole grain breakfast cereals, whole grain breads, oatmeal, brown rice, and bran are all healthy. All of them significantly reduce your risk of developing type 2 diabetes. Other whole grains are likely to be healthy too, but Americans consume so little of them, they could not be analyzed in this study.

However, there are some caveats:

  • You have to read labels carefully. Unless it says “100% whole grain”, it probably contains more refined grains than whole grains.
    • Yes, food manufacturers are intentionally deceptive. Who knew?
  • You have to look at the food, not just “whole grain” on the label.
    • It is hard to imagine, but Dr. Kellogg originally created breakfast cereals as health food. However, today many “whole grain” cereals are loaded with sugar and artificial ingredients. They are highly processed foods that are anything but healthy.
    • The case of popcorn is a perfect example. Popcorn is loaded with fiber. It should reduce your risk of diabetes. However, in this study it increased the risk of diabetes. That’s because 70% of the popcorn that Americans consume is purchased either pre-popped or ready to pop. It contains unhealthy ingredients like salt, butter, sugar, trans fats, and artificial flavors. It is a highly processed food. Air popped popcorn without the added ingredients is probably very healthy.

Why Are Whole Grains Healthy?

Dr. Strangelove and his buddies have told you to avoid all grains because they contain carbohydrates that are converted to sugar. That is good advice for refined grains. Not only are they rapidly converted to sugar. But they are also found in highly processed foods along with sugar, fat, and a witch’s brew of chemicals.

However, whole grains are different. Yes, whole grains are carbohydrate-rich foods, and the carbohydrate is converted to sugar during digestion. But:

  • They also contain fiber, which slows the digestion of the carbohydrate and delays the absorption of the sugar released during digestion.
  • The carbohydrate is trapped in a cellular matrix, which must be digested before the carbohydrate can be released.

In addition:

  • Whole grains contain nutrients and phytonutrients not found in refined grains.
  • The fiber in whole grains supports the growth of friendly bacteria in the gut.

How Many Whole Grain Foods Should I Be Eating?

This study found that you get the biggest “bang for your buck” when you go from 0 to around 2 servings per day of whole foods.

  • If you aren’t fond of whole grain foods, that is good news. It is also in line with USDA recommendation that half the grains we eat should be whole grains. You don’t need to eat whole grains with every meal.
  • If you are a purist, you can reduce your diabetes risk even more by increasing your whole grain intake up to at least 4.5 servings per day, the highest intake measured in this study.

Are Low Carb Diets Healthy?

Low carb diets may be effective for short term weight loss, but there is no evidence that they are healthy long term. And, because they cut out one or more food groups many experts feel they are likely to be unhealthy long term.

My advice is to forget “low carb” and focus on “healthy carb” instead.

  • Eliminate refined carbs and the highly processed foods they are found in.
  • Include fruits, whole grains, and beans as part of your diet. They are high carbohydrate foods, but, as this and other studies have shown, the carbohydrates in those foods are healthy carbs.

The Bottom Line

Low carb enthusiasts tell you to eliminate whole grains from your diet if you want to reduce your risk of developing diabetes. Is this true? Is it good advice?

A recent study put this advice to the test. It was a large (194,784 participants), long lasting (24 years), and well-designed study. Here is what the study found.

When participants with the highest whole grain intake were compared to those with the lowest whole grain intake:

  • Whole grain consumption was associated with a 29% lower risk of developing type 2 diabetes.

When they looked at the entire range of whole grain intake among participants in the study:

  • The risk reduction for developing type 2 diabetes was nonlinear.
  • The greatest portion of risk reduction (30% decreased risk) occurred between 0 and 2 servings/day.
  • But the reduction in risk continued to decrease at a slower rate up to 4.5 servings/day (38% decreased risk), the highest intake recorded for participants in this study.

When they looked at individual foods, whole grain breakfast cereals, whole grain bread, oatmeal, brown rice, and added bran all reduced diabetes risk.

The authors concluded, “Higher consumption of total whole grains and several commonly eaten whole grain foods, including whole grain breakfast cereal, oatmeal, whole grain bread, brown rice, and added bran, was significantly associated with a lower risk of type 2 diabetes. These findings provide further support for the current recommendations of increasing whole grain consumption as part of a healthy diet for the prevention of type 2 diabetes.”

For more details about this study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Does An Apple A Day Keep Diabetes Away?

A Holistic Approach To Preventing Diabetes 

Author: Dr. Stephen Chaney

VillainLow carb enthusiasts will tell you that carbohydrates are the villain. They tell you that cutting carbohydrates out of your diet will reduce your risk of obesity, diabetes, heart disease, and cancer.

If they limited their list of villainous foods to foods with white flour and/or added sugars, many nutrition experts would agree with them. There is widespread agreement in the nutrition community that we eat far too much of these foods.

However, I don’t have to tell you that many low carb diets also eliminate fruits, whole grains, and beans from their diets based solely on the carbohydrate content of these foods. Is this good advice? Is there any data to back up this claim?

The short answer is no. In fact, most studies suggest the opposite is true. I have covered these studies in previous issues of “Health Tips From The Professor”. For example:

  • In one issue I covered studies showing the people consuming primarily plant-based diets weigh less, have less inflammation, and have a lower risk of diabetes, heart disease, and high blood pressure than people consuming the typical American diet.
  • In another issue I shared studies showing that women consuming a plant-based low carb diet weigh less, and have reduced risk of diabetes and heart disease than women consuming a meat-based low carb diet.

However, these studies looked at the effect of the whole diet, not individual components of the diet.

This week I will review a study (NP Bondonno et al, The Journal of Clinical Endocrinology & Metabolism, 2021, doi:10.1210/clinem/dgab335) looking at the effect of fruit consumption on the risk of developing type 2 diabetes.

Next week I will review a study looking at the effect of whole grain consumption on the risk of developing type 2 diabetes.

How Was This Study Done?

Clinical StudyThis study made use of data from the Australian Diabetes Obesity And Lifestyle Study. This study recruited 7675 Australians 25 years or older from 7 states and territories in Australia in 1999 and 2000 and followed them for 5 years. The characteristics of the study population were:

  • Gender = 45% male, 55% female
  • Average age = 54 years
  • Average BMI = 26.8 (slightly overweight)
  • Did not have diabetes at time of entry into the study.

The participants filled out a food frequency questionnaire at the time of entry into the study. This questionnaire was used to analyze:

  • the amount of fruit consumed.
  • the amounts of vegetables, red meat, and processed meat consumed.
  • how many calories were consumed.

At the time of entry into the study several measurements were taken that assessed whether the participants had an increased risk of developing diabetes (otherwise known as pre-diabetes). These included:

  • Fasting plasma glucose and insulin levels.
  • A 2-hour glucose tolerance test. The results of this test were used to calculate insulin resistance and insulin sensitivity.

The study also recorded any participants who were diagnose with diabetes over the next 5 years.

Does An Apple A Day Keep Diabetes Away?

AppleThe data from this study were statistically adjusted for confounding variables (Other variables that might affect the risk of diabetes). Many confounding variables were included in the adjustment, but the ones of interest to us are age, sex, physical activity, obesity, caloric intake, and intakes of alcohol, vegetables, red meat, and processed meat.

After adjustment for all these variables the results were:

At the beginning of the study:

  • Fruit intake was inversely associated with insulin levels and insulin resistance.
  • Fruit intake was directly associated with insulin sensitivity.

In other words, the more fruit people ate, the less likely they were to have prediabetes at the time they entered the study.

At 5 years:

  • Fruit intake was inversely associated with diabetes.
  • Fruit juice had no effect on diabetes risk.

In other words, the more fruit people ate, the less likely they were to develop diabetes 5 years later. Fruit juice, on the other hand, had no beneficial effect on diabetes risk.

  • The benefit of fruit intake plateaued at 2-3 servings a day.

In other words, you don’t need to become a fruitarian. A modest intake of fruit (2-3 servings a day) is all you need.

In case you haven’t noticed, 2-3 servings of fruit a day matches USDA recommendations – and the recommendations of almost every other governmental and medical organization. What do they know that you didn’t know?

The most commonly eaten fruits in this study were apples (23%), bananas (20%), and oranges and other citrus fruits (18%). Enough people ate these three fruits that their effects on the risk of developing diabetes could be analyzed separately.

  • The beneficial effect of each of these fruits plateaued at about one serving a day.

In other words, an apple a day does keep diabetes away. However, apples can’t do it alone. You need a variety of fruits for optimal benefit.

The authors concluded, “A healthy diet including whole fruits, but not fruit juice, may play a role in mitigating type 2 diabetes risk.”

A Holistic Approach To Preventing Diabetes

Myth Versus FactsThis study explodes the myth that you should avoid fruits if you want to prevent diabetes. Yes, fruits do contain sugar, but:

  • They also contain fiber, which slows the absorption of that sugar.
  • The sugar is trapped in a cellular matrix, which must be digested before that sugar can be released. That also slows the absorption of sugar.

This is why fruit consumption reduces the risk of diabetes while fruit juice consumption does not.

However, I don’t want to give you the impression that you can reduce your risk of diabetes just by consuming more fruit. You need a holistic approach. Here are diabetes prevention tips from the American Diabetes Association.

  1. Get more physical activity.
    • The greatest benefit comes from a fitness program that includes both aerobic exercise and resistance training.

2) Get plenty of fiber.

    • Include fruits, vegetables, whole grains, beans, and nuts in your diet.

3) Lose extra weight.

    • One recent study showed that losing as little as 7% of your body weight and exercising regularly could reduce your risk of developing diabetes by almost 60%.

4) Skip fad diets and simply make healthier food choices.

    • “Low-carb diets, the glycemic index diet, and other fad diets may help you lose weight initially. But their effectiveness at preventing diabetes and their long-term effects aren’t known. And by excluding or strictly limiting a particular food group, you may be giving up essential nutrients.”

5) See your doctor on a regular basis and have your blood sugar tested, especially if you are overweight, have a family history of diabetes, or are over 45.

The Bottom Line

Low carb enthusiasts tell you to eliminate fruits from your diet if you want to reduce your risk of developing diabetes. Is this true? Is it good advice?

A recent study put this advice to the test. The study recruited 7675 Australians 25 years or older and followed them for 5 years. It correlated fruit intake with measures of prediabetes at the beginning of the study and correlated fruit intake with the onset of diabetes over the next 5 years. Here is what the study found.

  • The more fruit people ate, the less likely they were to have prediabetes at the time they entered the study.
  • The more fruit people ate, the less likely they were to develop diabetes 5 years later.
  • The benefit of fruit intake plateaued at 2-3 servings a day. In other words, you don’t need to become a fruitarian. A modest intake of fruit (2-3 servings a day) is all you need.

The most commonly eaten fruits in this study were apples (23%), bananas (20%), and oranges and other citrus fruits (18%). Enough people ate these three fruits that their effects on the risk of developing diabetes could be analyzed separately.

  • The beneficial effect of each of these fruits plateaued at about one serving a day.

In other words, an apple a day keeps diabetes away. However, apples can’t do it alone. You need a variety of fruits for optimal benefit.

The authors concluded, “A healthy diet including whole fruits, but not fruit juice, may play a role in mitigating type 2 diabetes risk.”

For more details about this study and a holistic approach to reducing your risk of diabetes recommended by the American Diabetes Association, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Do Low Fat Diets Reduce The Risk Of Diabetes?

Why Is Nutrition So Confusing?

Author: Dr. Stephen Chaney

EpigeneticsSometimes the professor likes to introduce you to the frontiers of nutrition. Epigenetics is such a frontier. In recent years, the hype has centered on DNA sequencing. It seems like everyone is offering to sequence your genome and tell you what kind of diet is best for you, what foods to eat, and what supplements to take. But can DNA sequencing fulfill those promises?

The problem is that DNA sequencing only tells you what genes you have. It doesn’t tell you whether those genes are active. Simply put, it doesn’t tell you whether those genes are turned on or turned off.

This is where epigenetics comes in. Epigenetics is the science of modifications that alter gene expression. In simple terms, both DNA and the proteins that bind to DNA can be modified. This does not change the DNA sequence. But these modifications can determine whether a gene is active (turned on) or inactive (turned off).

This sounds simple enough, but here is where it really gets interesting. These modifications are affected by our diet, our lifestyle (BMI and exercise), our microbiome (gut bacteria), and our environment.

In today’s “Health Tips From The Professor” I am going to share a study (CQ Lai et al, American Journal of Clinical Nutrition, 112: 1200-1211, 2020) that looks at the effect of diet (low-fat versus low-carb diets) on a particular kind of DNA modification (methylation) that affects a gene (CPT) which influences our risk for metabolic diseases (obesity, high triglycerides, low HDL, insulin resistance, pre-diabetes, and type 2 diabetes).

[Note: For simplicity I will just refer to type 2 diabetes in the rest of this article. Just be aware that whatever I say about type 2 diabetes applies to other metabolic diseases as well.]

Previous studies have shown that:

  • Methylation of the CPT gene is the only epigenetic change in the entire genome that is associated with decreased risk of type 2 diabetes.
  • CPT gene activity regulates multiple metabolic pathways that influence the risk of type 2 diabetes.
  • High fructose and sucrose consumption increases CPT gene methylation in rats, and high fat diets suppress that methylation.

Based on those data, the authors hypothesized that carbohydrate and fat intake affect the methylation of CPT gene, which:

  • Alters the activity of the CPT gene and…
  • Affects the risk of developing type 2 diabetes.

Since we are talking about our diet making alterations to our DNA, we could consider this as an example of, “We are what we eat”.

Biochemistry 101: Why Is Nutrition So Confusing?

ConfusionNow it is time for my favorite topic, Biochemistry 101. Along the way you will discover why nutrition is so complicated – and so confusing.

The CPT gene codes for a protein called carnitine palmitoyltransferase or CPT. CPT transports fats into the mitochondria where they can be oxidized to generate energy. Simply put, without CPT we would be unable to utilize most of the fats we eat. And, as you might expect, CPT is not required for carbohydrate metabolism.

  • In a simple world where our DNA sequence determines our destiny, we would either have an active CPT gene or an inactive mutant version of the gene. If we had the mutant version of the CPT gene, we would be unable to use fat as an energy source.

However, we don’t live in a simple world. Epigenetic modifications alter the activity of the CPT gene. When the CPT gene is unmethylated it is fully active. Methylation inactivates the gene.

  • In a simple world, a high fat diet would activate the CPT gene so our body would be able to utilize the fat in our diet. It would do that by decreasing methylation of the gene. Conversely, a high carbohydrate, low fat diet would decrease CPT gene activity by increasing methylation of the gene.

This is the one simple prediction that works exactly as expected. 

  • In a simple world, CPT would be involved in transport of fat into our mitochondria and nothing else. In that world, the activity of the CPT gene would only affect fat metabolism.

However, we don’t live in a simple world. By mechanisms that are not completely understood, carnitine palmitoyltransferase (CPT) also influences both insulin resistance and release of insulin by our pancreas. That means the activity of the CPT gene also affects our risk of developing type 2 diabetes. 

  • In the simplest terms, we can think of diabetes as an inability to properly regulate blood sugar levels. In a simple world, that would mean that carbohydrates are the problem, and we could reduce our risk of developing diabetes by restricting our intake of carbohydrates.

However, we don’t live in a simple world. There are short-term studies supporting the effectiveness of both low carb and low fat diets at helping to control blood sugar levels. However, longer term studies generally show that only whole food, low fat diets are associated with reduced risk of developing type 2 diabetes.

In other words, healthy carbohydrates aren’t the problem. They are the solution for reducing your risk of type 2 diabetes. This isn’t intuitive. It isn’t simple. But the weight of evidence points in this direction.

[I should add the emphasis is on “healthy” carbohydrates. I am talking about diets that emphasize whole food sources of carbohydrates (fruits, vegetables, whole grains, and legumes), not diets loaded with sugar, refined carbohydrates, and highly processed foods.]

Confused yet? Don’t worry. The authors of this study combined all this information into a single, unifying hypothesis.

They proposed that the fat and carbohydrate content of the diet influence methylation of the CPT gene, which influences the activity of the CPT gene, which influences both fat metabolism and the risk of developing type 2 diabetes. Specifically, they proposed that:

  • High fat diets reduce methylation of the CPT gene. This activates the CPT gene which results in more carnitine palmitoyltransferase (CPT) being produced. This improves fat metabolism, but also increases the risk of developing type 2 diabetes.
  • High carbohydrate, low fat diets increase methylation of the CPT gene. This inactivates the CPT gene which results in less CPT being produced. This is OK because there is little fat to be metabolized. However, it also has the advantage of reducing the risk of developing type 2 diabetes.

This can be visually represented as:Diet And CPT

How Was This Study Done?

Clinical StudyThis study combined the results from 3,954 selected participants in three previous clinical trials:

  • The Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study.
  • The Framingham Heart Study.
  • The REGICORE study. This study is similar in design to the Framingham Heart Study except the participants were drawn from a region of Spain.

The participants were selected based on 4 criteria:

  • The study they were in measured metabolic disease outcome.
  • The study they were in included a detailed diet analysis.
  • A DNA methylation analysis was performed on blood taken from these participants so that the methylation status of the CPT gene could be determined.
  • mRNA levels were measured for the CPT gene (This is a measure of how active the gene is. Active genes will produce lots of mRNA. Inactive genes will produce very little mRNA).

The study then analyzed the data and looked at the associations between carbohydrate and fat intake with:

  • Methylation of the CPT gene.
  • Activity of the CPT gene (measured as the amount of CPT mRNA produced by the gene).
  • Type 2 diabetes and other metabolic diseases.

Do Low Fat Diets Reduce The Risk Of Diabetes?

The authors systematically tested the predictions of their unifying hypothesis (To help you understand the significance of their findings, I am repeating the visual representation of their unifying hypothesis below):

Diet And CPT

  1. Methylation of the CPT gene was negatively associated with type 2 diabetes. Simply put, when the methylation of the of the CPT gene was high, the risk of type 2 diabetes was low. This confirmed the results of previous studies.

2) Carbohydrate and fat intake influenced methylation of the CPT gene. Specifically:

    • Carbohydrate intake and the ratio of carbohydrate to fat intake were positively associated with CPT methylation. Simply put, a high carbohydrate, low fat diet resulted in increased methylation of the CPT gene.
    • Fat intake was negatively associated with CPT methylation. Simply put, a high fat, low carbohydrate diet resulted in decreased methylation of the CPT gene.

3) Carbohydrate and fat intake influenced the activity of the CPT gene. Specifically:Diabetes and healthy die

    • Carbohydrate intake and the ratio of carbohydrate to fat intake was negatively associated with CPT mRNA levels (a measure of CPT gene activity). Simply put, a high carbohydrate, low fat diet resulted in lower CPT gene activity. This means the CPT gene produced less CPT. And, combined with the previous data, it also means that methylation of the CPT gene decreases its activity.
    • Fat intake was positively associated with CPT mRNA levels. Simply put, a high fat, low carbohydrate diet resulted in greater CPT gene activity. This means the CPT gene produces more CPT. And, combined with the previous data, it also means that reducing methylation of the CPT gene increases its activity.

4) CPT gene activity influenced the prevalence of type 2 diabetes. Specifically:

    • High CPT gene activity was positively associated with the risk of type 2 diabetes.
    • Low CPT gene activity was negatively associated with the risk of type 2 diabetes.

Putting this all together, as the authors had predicted,

  1. High fat, low carbohydrate diets reduce methylation of the CPT gene. This activates the CPT gene which results in more CPT being produced. This improves fat metabolism, but also increases the risk of developing type 2 diabetes.

2) High carbohydrate, low fat diets increase methylation of the CPT gene. This results in less CPT being produced. This is OK because there is little fat to be metabolized. However, it also has the advantage of reducing the risk of developing type 2 diabetes.

In short, the results of the study confirmed all the predictions of the author’s unifying hypothesis.

Putting it all together, the authors concluded, “Our results suggest that the proportion of total energy supplied by carbohydrate and fat can have a causal effect on metabolic diseases [like type 2 diabetes] via the epigenetic status (DNA methylation) of the CPT gene.” Simply put, their data suggested that high carbohydrate, low fat diets reduced the risk developing type 2 diabetes.

What Does This Study Mean For You?

Peek Behind The CurtainLet me start by saying that occasionally I like to give you a peak behind the curtain and talk about emerging areas of research. We should think of this article as the beginning of an exciting new area of research rather than as a definitive study.

I should start with the disclaimer that this study looks at associations between diet, methylation of the CPT gene, and risk of developing type 2 diabetes.

Associations do not prove cause and effect. This study does not prove that epigenetic changes to the CPT gene caused the reduction in type 2 diabetes risk.

High carbohydrate and high fat diets likely influence the risk of developing type 2 diabetes in other ways as well. For example, the fiber in healthy high carbohydrate diets may support friendly gut bacteria that reduce the risk of developing type 2 diabetes.

I also don’t view this study as one that settles the debate as to whether low carb or low fat diets are better for reducing the risk of type 2 diabetes. It does not clinch the argument for low fat diets. Rather, this study suggests a mechanism by which low fat diets may reduce the risk of metabolic diseases.

In summary, this study does not end the debate as to whether low carb or low fat diets are best. However, it does remind us just how complex the human body is. It reminds us that simple assumptions about how foods affect our bodies may not be the correct assumptions. It also helps us understand why nutrition can be so confusing.

The Bottom Line 

In recent years, DNA sequencing has become all the rage. It seems like everyone is offering to sequence your genome and tell you what kind of diet is best for you.

The problem is that DNA sequencing only tells you what genes you have. It doesn’t tell you whether those genes are active. Simply put, it doesn’t tell you whether those genes are turned on or off.

That is where epigenetics comes in. Epigenetics is the science of modifications that alter gene expression. In simple terms, both DNA and the proteins that bind to DNA can be modified. This does not change the DNA sequence. But these modifications can determine whether a gene is active (turned on) or inactive (turned off).

Epigenetics makes nutrition more complicated, and more confusing. For example, diabetes is characterized an inability to control blood sugar levels properly. Accordingly, it seems only logical that carbohydrates, especially sugars and simple carbohydrates, are the problem.

This study showed that high carbohydrate, low fat diets cause epigenetic modifications to a gene that reduces the risk of developing type 2 diabetes and other metabolic diseases. Conversely, high fat, low carb diets have the opposite effect.

This mechanism is consistent with multiple long-term studies showing that whole food, low fat diets reduce the risk of developing type 2 diabetes.

This study does not end the debate as to whether low carb or low fat diets are best. However, it does remind us just how complex the human body is. It reminds us that simple assumptions about how foods affect our bodies may not be the correct assumptions. It also helps us understand why nutrition can be so confusing.

For more details read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 

Do Processed Foods Increase Your Risk Of Diabetes?

Why Do We Keep Eating Processed Foods?

Fast Food DangersUnless you are Rip Van Winkle and have been asleep for the past 20 years you probably know that the highly processed foods in the typical American diet are bad for your health. But perhaps you didn’t realize just how bad they were.

But first, let’s start with a bit of perspective. Scientists like to be precise. Even healthy foods go through some processing.

  • The oatmeal you ate this morning was either steel-cut or ground. That is processing.
  • The almond butter you put on your whole grain toast this morning was made by roasting and grinding. That is processing.

So, scientists have developed the term “ultra-processed food” to describe the worst of the worse. In short, ultra-processed foods:

  • Usually go through several physical and chemical processes, such as extruding, molding, prefrying, and hydrogenation that can lead to the formation of toxic contaminants. One example you may have heard about recently would be acrylamide in French fries.
  • Typically contain ingredients of no or little nutritive value, such as refined sugar, hydrogenated oils, emulsifiers, artificial sweeteners, thickening agents, and artificial colors. Some of these ingredients have been linked to cancer, heart disease, and premature death.
  • Have long shelf-lives because of added preservatives. This allows migration of chemicals such as bisphenol A from the packaging materials into the food.

Examples of ultra-processed foods include:

  • Sodas
  • Chips
  • Candy and packages of cookies or crackers
  • Most breakfast cereals
  • Boxed cake, cookie, and pancake mix
  • Chicken nuggets and fish sticks
  • Fast food burgers
  • Hot dogs and other processed meats
  • Infant formula
  • Instant noodles
  • Most store-bought ice cream
  • Flavored yogurt

In short, ultra-processed foods include sodas and the junk and convenience foods Americans hold so dear. Even things like infant formula and flavored yogurt make the list.

Evidence of the ill effects of ultra-processed foods on our health is becoming overwhelming. In previous issues of “Health Tips From the Professor” I have shared recent studies that have shown that heavy consumption of ultra-processed foods is linked to increased risk of obesity and cancer. Other studies have linked ultra-processed food consumption with increased risk of depression, heart disease, and premature death.

In this issue of “Health Tips From the Professor” I:

  • Ask the important question, “If we know these foods are so bad for us, why do we still keep eating them?”

How Was The Study Done?

Clinical StudyThe data from this study were taken from an ongoing study in France (the NutriNet-Sante study) looking at associations between nutrition and health. This study began enrolling French adults 18 and older in 2009.

This is a web-based study. Participants are prompted to go to a dedicated website and fill out questionnaires related to things like sex, age, height, weight, smoking status, physical activity, health status, and diet.

With respect to diet, participants filled out a series of 3 nonconsecutive 24-hour dietary records at the time of enrollment and every 6 months. This is a particularly strong feature of this study. Many studies of this type only analyze participant’s diets at the beginning of the study. Those studies have no way of knowing how the participant’s diets may have changed during the study.

Diagnosis of type 2 diabetes for study participants was obtained from the French centralized health records.

The study enrolled 104,708 participants, 20% men and 80% women, and followed them for an average of 6 years. The average age of the participants was 43 years.

Do Processed Foods Increase Your Risk Of Diabetes?

High Blood SugarIn this study the range of ultra-processed foods in the French diet ranged from 7% to 27% (average = 17%). High intake of ultra-processed foods was associated with:

  • Younger participants. Simply put, young people were more likely to drink sodas and eat junk food than older adults.
  • Increased caloric intake. Ultra-processed foods have a higher caloric density than whole, unprocessed foods.
  • No surprise here. Previous studies have shown that ultra-processed food consumption increases the risk of obesity.
  • Poorer diet quality. Again, no surprise. Junk foods tend to crowd healthier foods out of the dirt. Specifically, ultra-processed food consumption was associated with:
    • Higher intake of sugar and salt.
    • Lower intake of fiber.
    • Higher intake of sugary drinks, red and processed meats.
    • Lower intake of whole grains, yogurt, nuts, fruits, and vegetables.

However, even after statistically correcting for all these factors, there was a significant association between ultra-processed food consumption and the onset of type 2 diabetes in the 6-year follow-up period.

  • There was a linear relation between ultra-processed food consumption and the development of type 2 diabetes. Simply put, the more ultra-processed food the participants consumed the more likely they were to be diagnosed with type 2 diabetes.
  • There was a 15% increased risk of developing type 2 diabetes for every 10% increase in ultra-processed food consumption.

The authors concluded:

“In this large observational prospective study, a higher proportion of ultra-processed food in the diet was associated with a higher risk of type 2 diabetes. Even though these results need to be confirmed in other populations and settings, they provide evidence to support efforts by public health authorities to recommend limiting ultra-processed food consumption.”

What Does This Study Mean For You?

Questioning WomanYou might be tempted to say that a 15% increase in the risk of developing diabetes is a small price to pay for continuing to eat the foods you enjoy. However, you should be alarmed by this study. Here is why.

The French diet is much healthier than the American. Remember that ultra-processed foods only comprised 17% of the French Diet. In contrast, a recent survey found that:

  • Ultra-processed foods make up 58% of the average American’s diet.
  • Ultra-processed foods account for 90% of the added sugar in our diet.

It is no wonder that obesity and diabetes are reaching epidemic proportions in our country.

You might also be tempted to think that you can just take some medications and live with type 2 diabetes. However, you should think of type 2 diabetes as a gateway disease. It increases your risk of heart disease, high blood pressure, Alzheimer’s disease, kidney damage, and neuropathy, just to name a few. These are diseases that make your life miserable and ultimately kill you.

More importantly, type 2 diabetes is completely reversible if you catch it early enough. Just lose some weight, exercise more, give up the ultra-processed foods, and eat a healthy diet. I recommend a whole food, primarily plant-based diet.

Why Do We Keep Eating Processed Foods?

Fast FoodsWe all know that ultra-processed foods are bad for us. Study after study show that they make us sick. They kill us prematurely. And, unlike most topics in the field of nutrition, this is not controversial.

For example, there have been lots of bizarre diets that have come and gone over the years. There have been books written on “The Steak Lover’s Diet” and “The Drinking Man’s Diet”. But nobody has written a book on “The Junk Food Lover’s Diet”. It simply would not be believable.

So why do we Americans keep eating such unhealthy foods. Part of the answer is physiological. A preference for sweet, salty, and fatty foods is hardwired into our brain. That’s because they had great survival value in prehistoric times.

If we think back to the time when we were hunters and gatherers:

  • Fruits are healthy foods. They are a great source of antioxidants, phytonutrients, and fiber, but there were no orchards or grocery stores back then. We had to search for fruits in the wild. Our desire for sweet tasting foods provided the motivation to seek them out.
  • Game was seasonal and sometimes scarce. We had to be prepared to go for days or weeks without eating except for the leaves and roots we could gather. Our bodies are designed to store fat as the primary energy source to get us through the lean times. Our preference for fatty foods encouraged us to store as much fat as possible in times of plenty so we would be prepared for times of scarcity.
  • If we fast forward to our early recorded history, salt was scarce. It was worth its weight in gold. Yet some salt is essential for life. Our preference for salty foods encouraged us to search out supplies of salt.

Unfortunately, the food industry has weaponized these food preferences to create the ultra-processed foods we know today. Their ads entice us by associating these foods with youth and good times. And ultra-processed foods have become ubiquitous. There are fast food restaurants on almost every street corner and shopping mall in the country.

Fortunately, we do not have to let the food industry destroy our health. We can retrain our taste buds to appreciate the sweetness of fresh fruits and vegetables. We can substitute healthy fats for the kinds of fat found in most ultra-processed foods. We can also retrain our taste buds to appreciate herbs and spices with just a pinch of salt.

The Bottom Line

Ultra-processed foods, such as sodas, junk foods, and convenience foods have become the biggest food group in the American diet. A recent study found:

  • Ultra-processed foods make up 58% of the average American’s diet.
  • Ultra-processed foods account for 90% of the added sugar in our diet.

That is scary because ultra-processed foods are deadly. Previous studies have shown that consumption of ultra-processed foods is linked to obesity, heart disease, cancer, and Alzheimer’s disease.

The study discussed this week looked at the association between ultra-processed food consumption and type 2 diabetes. It showed:

  • There was a linear relation between ultra-processed food consumption and the development of type 2 diabetes. Simply put, the more ultra-processed food the participants consumed the more likely they were to be diagnosed with type 2 diabetes.
  • There was a 15% increased risk of developing type 2 diabetes for every 10% increase in ultra-processed food consumption.

You might be tempted to think that you can just take some medications and live with type 2 diabetes. However, you should think of type 2 diabetes as a gateway disease. It increases your risk of heart disease, high blood pressure, Alzheimer’s disease, kidney damage, and neuropathy, just to name a few. This are diseases that make your life miserable and ultimately kill you.

More importantly, type 2 diabetes is completely reversible if you catch it early enough. Just lose some weight, exercise more, give up the ultra-processed foods, and eat a healthy diet. I recommend a whole food, primarily plant-based diet.

For more details and a discussion of why Americans continue to eat ultra-processed food even though we know it is bad for us, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor